Одним з відомих нам прикладів такого розкладання є розподільна властивість множення a(b + с) = ab + ас, якщо її записати у зворотному порядку: аb + ас – a(b + с). Це означає, що многочлен аb + ас розклали на два множники а і b + с.
Під час розкладання на множники многочленів із цілими коефіцієнтами множник, який виносять за дужки, обирають так, щоб члени многочлена, який залишиться в дужках, не мали спільного буквеного множника, а модулі їх коефіцієнтів не мали спільних дільників.
Розглянемо кілька прикладів.
Приклад 1. Розкласти вираз на множники:
1) 8m + 4;
2) at + 7ар;
3) 15а3b – 10а2b2.
Р о з в’ я з а н н я.
1)
Спільним множником є число 4, тому
8m + 4 = 4 . 2m + 4 ∙ 1 = 4(2m + 1).
2) Спільним множником є змінна а, тому
At + 7ap = a(t + 7p).
3) У даному випадку спільним числовим множником є найбільший спільний дільник чисел 10 і 15 – число 5, а спільним буквеним множником є одночлен а2b. Отже,
15а3b – 10а2b2 = 5а2b ∙ 3а – 5a2b ∙ b = 5а2b(3а – 2b).
Приклад 2. Розкласти па множники:
1) 2m(b – с) + 3р(b – с);
2) х(у – t) + c(t – у).
Р о з в ‘ я з а н н я.
1) У даному випадку спільним множником є двочлен b = c.
Отже, 2m(B – С) + 3р(B – C) = (b – с)(2m + 3р).
2) Доданки мають множники у – t і t – у, які є протилежними виразами. Тому в другому доданку винесемо за дужки множник -1, одержимо: c(t – у) = – с(у – t).
Отже, х(у – t) + c(t – у) = х(у – t) – с(у – t) = (у – t) (х – с).
Может быть в скобках умножение?
Первый
160 : (4 × 10) = 160 : 40 = 4
810 : (30 × 3) = 810 : 90 = 9
420 : (2 × 3) = 420 : 6 = 70
480 : (20 × 4) = 480 : 80 = 6
720 : (9 × 10) = 720 : 90 = 8
360 : (3 × 2) = 360 : 6 = 60
560 : (10 × 8) = 560 : 80 = 7
630 : (3 × 30) = 630 : 90 = 7
Второй
160 : (4 × 10) = 160 : 4 : 10 = 40 : 10 = 4
810 : (30 × 3) = 810 : 30 : 3 = 27 : 3 = 9
420 : (2 × 3) = 420 : 2 : 3 = 210 : 3 = 70
480 : (20 × 4) = 480 : 20 : 4 = 24 : 4 = 6
720 : (9 × 10) = 720 : 9 : 10 = 80 : 10 = 8
360 : (3 × 2) = 360 : 3 : 2 = 120 : 2 = 60
560 : (10 × 8) = 560 : 10 : 8 = 56 : 8 = 7
630 : (3 × 30) = 630 : 3 : 30 = 210 : 30 = 7
Первый удобнее.
Угловой коэффициент касательной как прямой равен отношению Δу/Δх.
Этому же отношению в пределе при Δх стремящемуся к 0 равна производная.
Остаётся найти производную функции.