Видим, что f'(x)=cos(2x). Приравниваем к нулю, чтобы найти точки минимума и максимума: cos(2x)=0 <=> 2x=pi/2+pi*k <=> x=pi/4+pi*k/2. На заданном отрезке отмечаем точки x=5*pi/4 и 7*pi/4. Получили три интервала: первый, [pi; 5pi/4) - на нем производная принимает положительные значения, значит функция возрастает; Второй, (5pi/4; 7pi/4) - на нем производная принимает отрицательные значения, значит функция убывает и тогда точка 5pi/4 - точка максимума, в которой функция принимает наибольшее значение 1/2. Третий, (7pi/4; 2*pi] - на нем производная принимает положительные значения, значит функция возрастает и тогда точка 7pi/4 - точка минимума, в которой функция принимает наименьшее значение -1/2.
Размах ряда чисел – это разность между наибольшим и наименьшим из этих чисел. Пример: Найти размах чисел 2, 5, 8, 12, 33. Решение: Наибольшее число здесь 33, наименьшее 2. Значит, размах составляет 31: 33 – 2 = 31. Мода ряда чисел – это число, которое встречается в данном ряду чаще других. Пример: Найти моду ряда чисел 1, 7, 3, 8, 7, 12, 22, 7, 11, 22, 8. Решение: Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел. Медиана. В упорядоченном ряде чисел: Медиана нечетного количества чисел – это число, записанное посередине. Пример: В ряде чисел 2, 5, 9, 15, 21 медианой является число 9, находящееся посередине. Медиана четного количества чисел – это среднее арифметическое двух чисел, находящихся посередине. Пример: Найти медиану чисел 4, 5, 7, 11, 13, 19. Решение: Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел: (7 + 11) : 2 = 9. Число 9 и является медианой данного ряда чисел. В неупорядоченном ряде чисел: Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда. Пример 1: Найдем медиану произвольного ряда чисел 5, 1, 3, 25, 19, 17, 21. Решение: Располагаем числа в порядке возрастания: 1, 3, 5, 17, 19, 21, 25. Посередине оказывается число 17. Оно и является медианой данного ряда чисел. Пример 2: Добавим к нашему произвольному ряду чисел еще одно число, чтобы ряд стал четным, и найдем медиану: 5, 1, 3, 25, 19, 17, 21, 19. Решение: Снова выстраиваем упорядоченный ряд: 1, 3, 5, 17, 19, 19, 21, 25. Посередине оказались числа 17 и 19. Находим их среднее значение: (17 + 19) : 2 = 18. Число 18 и является медианой данного ряда чисел.