Обыкновенная комбинаторика (если знаешь такую) Посмотрим: сколько цифр может стоять на 5 месте (предпоследняя цифра): всего 10 вариантов (все 10 цифр). Теперь посмотрим на последнюю цифру: для неё тоже 10 вариантов (10 цифр). Следовательно: 10*10=100 вариантов для лотерейного билета из шестизначного числа (если могут быть одинаковые цифры) Вот решение если все цифры в числе должны быть разными (в условии этого не указано, поэтому разбираю 2 варианта условия) Посмотрим, сколько вариантов есть для предпоследней (пятой) цифры. 1,2,3,4 - отпадают. Следовательно остаются только: 5,6,7,8,9,0 т. е. 6 вариантов. Теперь посмотрим на последнюю цифру: для нее всего 5 вариантов. Следовательно: 6*5=30 вариантов для лотерейных билетов.
Обыкновенная комбинаторика (если знаешь такую) Посмотрим: сколько цифр может стоять на 5 месте (предпоследняя цифра): всего 10 вариантов (все 10 цифр). Теперь посмотрим на последнюю цифру: для неё тоже 10 вариантов (10 цифр). Следовательно: 10*10=100 вариантов для лотерейного билета из шестизначного числа (если могут быть одинаковые цифры) Вот решение если все цифры в числе должны быть разными (в условии этого не указано, поэтому разбираю 2 варианта условия) Посмотрим, сколько вариантов есть для предпоследней (пятой) цифры. 1,2,3,4 - отпадают. Следовательно остаются только: 5,6,7,8,9,0 т. е. 6 вариантов. Теперь посмотрим на последнюю цифру: для нее всего 5 вариантов. Следовательно: 6*5=30 вариантов для лотерейных билетов.
l2-уl=45*2/(32*5) минус на минус дает плюс
l2-уl = 9/16
раскроем модуль
2-у=9/16 -у=9/16-2 у=23/16 у= 1 целая 7/16
2-у= -9/16 -у=-9/16-2 у=2 целых 9/16