После возведения в квадрат получим:
1) Sin² x = 2Cos x - 0,25
1 - Cos² x -2Cos x + 0,25 = 0
-Cos² x - 2Cos x +1,25 = 0
Решаем как квадратное по чётному коэффициенту:
Cos x = (1 +-√2,25)/-1 = (1 +-1,5) /-1
а)Cos x = -2,5 б) Cos x = -1/2
нет решений х = +- arcCos(-1/2) + 2πк, к∈Z
x = +- 2π/3 + 2πк, к ∈Z
2) Теперь проверяем промежуток
к = -1
х = 2π/3 - π (не входит в промежуток)
х = -2π/3 - π( не входит в промежуток)
к = -2
х = 2π/3 - 2π ( не входит в промежуток)
х = - 2π/3 - 2π = -8π/3 ( входит в промежуток)
к = -3
х = 2π/3 - 3π = -2 1π/3 (входит)
х =- 2π/3 - π - 1 2/3 π( входит)
к = -4
х = 2π/3 - 4π = - 3 1/3π (входит)
х =- 2π/3 - 4π (не входит)
к = -5
х = 2π/3 - 5π= - 4 1/3 π( входит)
х =- 2π/3 -5 π (не входит)
Пошаговое объяснение:
Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:
а + b + с = 15 [1]
По свойству арифметической прогрессии:
b - а = с - b
2b = а + с подставим в уравнение [1], получим:
2b + b = 15
3b = 15
b = 5 - второй член арифметической прогрессии.
Тогда сумма первого и третьего членов:
а + с = 15 - 5
а + с = 10 ⇒ c = 10 - a
Переходим к геометрической прогрессии. По условию:
первый член = а + 1
второй член = b + 3 = 5 + 3 = 8
третий член = с + 9 = 10 - a + 9 = 19 - a
По свойству геометрической прогрессии:

не удовл.условию, так как искомая геометрическая прогрессия возрастающая.
Получили а = 3, тогда с = 10 - а = 10 - 3 = 7
Итак, первые три члена арифметической прогрессии: 3; 5; 7.
Найдем три первых члена геометрической прогрессии:
первый член = а + 1 = 3 + 1 = 4
второй член = 8
третий член = с + 9 = 7 + 9 = 16
Искомая геометрическая прогрессия: 4; 8; 16; ...
Найдем сумму 7 первых членов.
b₁ = 4 - первый член
q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии
Искомая сумма:

ответ: 508