Дано: Δ АВС ∠С = 90° АК - биссектр. АК = 18 см КМ = 9 см Найти: ∠АКВ Решение. Т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) К на гипотенузу АВ и обозначим это расстояние КМ. Рассмотрим полученный Δ АКМ, Т.к. ∠АМК = 90°,то АК гипотенуза, а КМ - катет. Поскольку, исходя из условия, катет КМ = 9/18 = 1/2 АК, то ∠КАМ = 30°. Т.к. по условию АК - биссектриса, то ∠САК =∠КАМ = 30° Рассмотрим ΔАКС. По условию ∠АСК = 90°; а∠САК = 30°, значит, ∠АКС = 180° - 90° - 30° = 60° Искомый ∠АКВ - смежный с ∠АКС, значит, ∠АКВ = 180° - ∠АКС = 180° - 60° = 120° ответ: 120°
Оценка по столбцам: минимально возможное количество закрашенных клеток - 1·10=10. Оценка по строкам: минимально возможное количество закрашенных клеток - 3·10=30. Если разместить в каждую строку по 3 закрашенных клетки, то общее их количество не удастся разделить на столбцы по 1 или 7 клеток, так как система: не имеет решения в натуральных числах (первое уравнение - общее число столбцов, второе - количество закрашенных клеток). Если постепенно увеличивать общее количество закрашенных клеток, то окажется, что при их количестве, равном 34, система даст решение (4; 6). Значит, в 4 столбцах будет закрашено 7 клеток, а в 6 столбцах - одна. Дополнительно введенные 4 клетки равномерно распределим между этими строками, пользуясь условием, что в строке может быть 4 закрашенных клетки. Пример расстановки на картинке. ответ: 34
13×12=156
130+26=156