Размещения A(m,n)=n!/(n−m)!, где n=5 - общее количество чисел, m=4 - число чисел в выборке.
Находим:
d1=A(4,5)=5!/(5−4)!=2*3∗4∗5=120
Числа не могут начинаться с 0, т.е. это количество чисел (начинающихся с 0) нужно вычесть из полученного количества. Первая цифра этих четырехзначных чисел известна - 0, а остальное количество чисел находим по формуле Размещения, где n=4, m=3, т.к. одна цифра (0) уже использована
d2=4!/2!=3∗4=12
Получили, что количество четырехзначных чисел равно
D=d1−d2=120-12=108
0,1,4,5,6,9.
Если бы квадрат заканчивался на 0, то потребовалось бы два нуля ((10n)²=100n)
Поэтому квадрат заканчивается на 5.
Но если он заканчивается на 5, то он заканчивается на 25. ((10n+5)²=100n²+100n+25=100(n²+n)+25)
на 0 число начинаться не может, то есть искомый квадрат 3025, а возводили в квадрат, получается 55.
ответ: 55.