Пошаговое объяснение:
точки экстремума функции определяются при первой производной.
точка х₀ будет точкой экстремума, если y'(x₀)=0
для определения максимум или минимум смотрим знак второй производной в этой точке
если у''(x₀) > 0 , то это точка минимума функции.
если у''0(x*) < 0 , то это точка максимума
итак, поехали
1) у=х² - 8х +5
y' = 2x-8
2x-8 = 0; x₁ = 4
значение функции в точке х₀ = 4
у(4) = -11
теперь смотрим - это минимум или максимум
y'' = 2
y''(4) = 2 >0 - значит точка x = 4 точка минимума функции.
2)
у=х³- 4х² + 5х - 1
y' = 3x²-8x+5
3x²-8x+5=0; x₁ = 1; x₂ = 5/3 (точки экстремумов)
теперь смотрим, где минимум, а где максимум
y''(1) = -2<0 - значит точка x₁ = 1 это точка максимума функции.
y''(5/2) = 2 > 0 значит точка x₂ = 5/2 это точка минимума функции.
Пошаговое объяснение:
точки экстремума функции определяются при первой производной.
точка х₀ будет точкой экстремума, если y'(x₀)=0
для определения максимум или минимум смотрим знак второй производной в этой точке
если у''(x₀) > 0 , то это точка минимума функции.
если у''0(x*) < 0 , то это точка максимума
итак, поехали
1) у=х² - 8х +5
y' = 2x-8
2x-8 = 0; x₁ = 4
значение функции в точке х₀ = 4
у(4) = -11
теперь смотрим - это минимум или максимум
y'' = 2
y''(4) = 2 >0 - значит точка x = 4 точка минимума функции.
2)
у=х³- 4х² + 5х - 1
y' = 3x²-8x+5
3x²-8x+5=0; x₁ = 1; x₂ = 5/3 (точки экстремумов)
теперь смотрим, где минимум, а где максимум
y''(1) = -2<0 - значит точка x₁ = 1 это точка максимума функции.
y''(5/2) = 2 > 0 значит точка x₂ = 5/2 это точка минимума функции.
В делимом и в делителе перенесем запятую вправо на столько знаков ( цифр) , сколько их в делителе после запятой.
Получается, что мы делим на натуральное число.
1) 0,42 : 0,06 = 42 : 6 = 7
2) 0,036 : 0,09 = 3,6 : 9= 0,4
3,6 / 9
3 6 ------
----- 0,4
0
3) 1,23 : 0,41 = 123:41= 3
123 / 41
-123 -----
------ 3
0
Дальше по такому же принципу :
5)0,056 : 0,08 = 5,6 :8 = 0,7
6) 0,975 : 1,95 = 97,5 : 195= 0,5
7) 5,85 :3,25= 585 :325= 1,8
8) 4,92 : 16,4 = 49,2 : 164= 0,3
9) 9,9 : 4,5 = 99 :45 = 2,2