Переместительный (коммутативный) закон сложения: m + n = n + m . Сумма не меняется от перестановки её слагаемых.
Переместительный (коммутативный) закон умножения: m · n = n · m . Произведение не меняется от перестановки его сомножителей.
Сочетательный (ассоциативный) закон сложения: ( m + n ) + k = m + ( n + k ) = m + n + k . Сумма не зависит от группировки её слагаемых.
Сочетательный (ассоциативный) закон умножения: ( m · n ) · k = m · ( n · k ) = m · n · k . Произведение не зависит от группировки его сомножителей.
Распределительный (дистрибутивный) закон умножения относительно сложения: ( m + n ) · k = m · k + n · k . Этот закон фактически расширяет правила действий со скобками
Итак, ясно что данное уравнение всегда имеет один корень
Значит, нужно найти условие, когда:
1) либо один (и только один) из двух разных корней квадратного уравнения
2) либо квадратное уравнение:
будет иметь ровно один корень.
1*) При подстановке в квадратное уравнение
В самом деле, уравнение:
2*) квадратное уравнение:
В самом деле, уравнение:
О т в е т :