М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
GrebenukMerry
GrebenukMerry
08.11.2020 09:50 •  Математика

Как выражение. уровнение. желательно правило.

👇
Ответ:
zhahbota
zhahbota
08.11.2020
ССвойства сложения, вычитания, умножения и деления полезны тем, что позволяют преобразовывать суммы и произведения в удобные выражения для вычислений. Научимся, как можно с этих свойств упрощать выражения.

Вычислим сумму:

52 + 287 + 48 + 13 =

В этом выражении есть числа, при сложении которых получаются «круглые» числа. Заметив это, легко провести вычисления устно. Воспользуемся переместительным законом сложения.



Также для упрощения вычисления произведений можно использовать переместительный закон умножения.

7 · 2 · 9 · 5 = (2 · 5) · (7 · 9) = 10 · 63 = 630 

Сочетательные и переместительные свойства используются и при упрощении буквенных выражений.

6 · a · 2 = 6 · 2 · a = 12a2 · a · 4 · b = 2 · 4 · a · b = 8ab5b + 8b = (5 + 8) · b = 13b14y − 12y = (14 − 12) · y = 2y

Распределительный закон умножения часто применяется для упрощения вычислений.



Применяя распределительное свойство умножения относительно сложения или вычитания к выражению (a + b) · с и (a − b) · c, мы получаем выражение, не содержащее скобки.

В этом случае говорят, что мы раскрыли (опустили) скобки. Для применения свойств не имеет значения, где записан множитель «c» — перед скобками или после.

Раскроем скобки в выражениях.

2(t + 8) = 2t + 16(3x − 5)4 = 4 · 3x − 4 · 5 = 12x − 20

Запомните!

Если перед буквой не записано число, то подразумевается, что перед буквой стоит числовой множитель 1.

t + 4t = (1 + 4)t = 5t

Вынесение общего множителя за скобки

Поменяем местами правую и левую часть равенства:

(a + b)с = ac + bc

Получим:

ac + bc = (a + b)с

В таких случаях говорят, что из «ac + bc»вынесен общий множитель «с» за скобки.

Примеры вынесения общего множителя за скобки.

73 · 8 + 7 · 8 = (73 + 7) · 8 = 80 · 8 = 6407x − x − 6 = (7 − 1)x − 6 = 6x − 6 = 6(x − 1)
4,8(28 оценок)
Открыть все ответы
Ответ:
Задание 1
ВС = 12,4 - 2,9 = 9,5 см

Задание 3
Так как периметр - это сумма всех сторон, то:
ВС = 103 - (34+31) = 38 см

Задание 4
Высота, поведённая в равнобедренном треугольнике является его биссектрисой и медианой.
Углы при основании равны, и они будут (180-80):2 = 50 градусов
И биссектриса делит угол при вершине пополам: 80:2=40 градусов (я не совсем поняла, какой именно угол найти, поэтому написала 2варианта)

Задание 5
Биссектриса делит угол пополам, и если угол ЕАС = 12, то и угол ВАЕ тоже равен 12

Задание 6
Из неравенства треугольников (каждая сторона меньше суммы двух других):
АВ < АС + СВ
АС < АВ + ВС
ВС < ВА + АС

Проверяем каждый вариант через данное неравенство.

7 думаю точно можно построить
4,5(54 оценок)
Ответ:
Tommh
Tommh
08.11.2020
Биссектриса треугольника лежит между его высотой и медианой, которые проведены из той же вершины.

Поэтому K лежит на отрезке MH.

1.

Рассмотри ∠ACH и ∠ABC:

CA⊥BA и CH⊥BH по условию;

∠ACH = ∠ABC, как углы с взаимно перпендикулярными сторонами.

Медиана прямоугольного треугольника, проведённая к гипотенузе, равна половине гипотенузы.

Поэтому CM = BM, тогда ΔBMC - равнобедренный.

Углы при основании равнобедренного треугольника равны.

Поэтому ∠MBC = ∠MCB, откуда ∠ACH = ∠MCB (т.к. ∠ACH = ∠MBC).

∠ACK = ∠BCK, как углы при биссектрисе;

∠ACH = ∠MCB;

Тогда ∠ACK - ∠ACH = ∠BCK - ∠MCB;

∠HCK = ∠MCK.

Биссектриса треугольника делит сторону треугольника на отрезки, пропорциональные прилежащим сторонам.

2.

Рассмотрим ΔMCH:

CK - биссектриса MCH, поскольку ∠HCK = ∠MCK;

Тогда справедливо равенство \dfrac{CM}{CH} =\dfrac{MK}{KH} =\dfrac{5}{3};

Пусть CM = 5x, тогда CH = 3x;

HM = HK+KM = 3+5 = 8;

ΔMCH - прямоугольный (CH⊥MH ⇒ ∠CHM = 90°);

Тогда по теореме Пифагора получим:

CH²+HM² = CM²;

(3x)²+8² = (5x)²;

9x²+64 = 25x²;

64 = 16x²;

x² = 64:16 = 2²;

x = 2.

CM = 5x = 5·2 = 10;

CH = 3x = 3·2 = 6.

3.

CM = BM = MA;

MA = 10;

AB = 2·MA = 2·10 = 20;

AH = MA-HM = 10-8 = 2.

4.

Рассмотрим ΔCHA:

∠CHA = 90°;  AH = 2;  CH = 6;

По теореме Пифагора найдём AC:

AC² = CH²+AH² = 6²+2² = 36+4 = 2²·10;

AC = 2√10.

5.

Рассмотрим ΔABC:

∠ACB = 90°;  AC = 10√2;  AB = 20;

По теореме Пифагора надём BC:

BC² = AB²-AC² = 20²-40 = 400-40 = 6²·10;

BC = 6√10.

6.

Рассмотрим ΔCHK:

∠CHK = 90°;  CH = 6;  HK = 3;

По теореме Пифагора найдём CK:

CK² = CH²+HK² = 6²+3² = 36+9 = 3²·5;

CK = 3√5.

ответ: AB = 20;  BC = 6√10;  AC = 2√10;  CK = 3√5.


30 . из вершины прямого угла c треугольника abc проведены высота ch, биссектриса ck и медиана cm. и
4,5(57 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ