М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
oksa7610
oksa7610
09.12.2022 12:11 •  Математика

Решить уравнение (х-3): 6=7: 3 заранее

👇
Ответ:
Х-3=7/3 *6
х-3=14
х=14+3
х=17
4,7(69 оценок)
Ответ:
LOL2202
LOL2202
09.12.2022
3(х – 3) = 7 х 6
3х – 9 = 42
3х = 42 + 9
3х = 51
х = 17
4,7(43 оценок)
Открыть все ответы
Ответ:
вика3877
вика3877
09.12.2022
Пусть разложения вектора \overline{x} по векторам имеет вид:
        \overline{x}= \alpha\cdot \overline{p}+ \beta \cdot\overline{q}+\gamma \cdot \overline{r}

запишем это уравнение в векторной форме:

\{8;0;5\}= \alpha \cdot \{2;0;1\}+ \beta \cdot \{1;1;0\}+\gamma\cdot \{4;1;2\}\\ \\ \{8;0;5\}=\{2 \alpha ;0; \alpha \}+\{ \beta ; \beta ;0\}+\{4\gamma;\gamma;2\gamma\}

Чтобы найти сумму векторов, заданных своими координаты, необходимо просуммировать их соответствующие координаты

\{8;0;5\}=\{2 \alpha + \beta +4\gamma; \beta +\gamma; \alpha +2\gamma\}

Два вектора равны, если их соответствующие координаты равны, то есть, получаем следующую систему уравнений:
\displaystyle \begin{cases}
 & \text{ } 2 \alpha + \beta +4\gamma=8 \\ 
 & \text{ } \beta +\gamma=0 \\ 
 & \text{ } \alpha +2\gamma=5 
\end{cases}
Запишем эту систему в матричной форме и решим методом Гаусса.

\displaystyle \left(\begin{array}{ccc}2&1&4\\0&1&1\\1&0&2\end{array}\right \left|\begin{array}{ccc}8\\0\\5\end{array}\right)\sim\left(\begin{array}{ccc}1&0.5&2\\ 0&1&1\\ 1&0&2\end{array}\right \left|\begin{array}{ccc}4\\0\\5\end{array}\right)\sim\left(\begin{array}{ccc}1&0&1.5\\ 0&1&1\\0&-0.5&0\end{array}\right \left|\begin{array}{ccc}4\\0\\ 1\end{array}\right)\sim\\ \\ \\

\left(\begin{array}{ccc}1&0&1.5\\ 0&1&1\\ 0&0&0.5\end{array}\right \left|\begin{array}{ccc}4\\0\\1\end{array}\right)\sim\left(\begin{array}{ccc}1&0&1.5\\ 0&1&1\\0&0&1\end{array}\right \left|\begin{array}{ccc}4\\0\\2\end{array}\right)\sim\left(\begin{array}{ccc}1&0&0\\ 0&1&1\\ 0&0&1\end{array}\right \left|\begin{array}{ccc}1\\0\\2\end{array}\right)\sim

\left(\begin{array}{ccc}1&0&0\\0&1&0\\ 0&0&1\end{array}\right \left|\begin{array}{ccc}1\\-2\\2\end{array}\right)

Получаем решения данной системы уравнений с тремя переменными\begin{cases}
 & \text{ } \alpha =1 \\ 
 & \text{ } \beta =-2 \\ 
 & \text{ } \gamma=2 
\end{cases}



Следовательно, искомое разложение

                                                      \overline{x}= \overline{p}-2\overline{q}+2\overline{r}
4,4(90 оценок)
Ответ:
Кети20060106
Кети20060106
09.12.2022

Випишемо координати початку O і кінця A вектора a:

O(0;0), A(1;3).

Обчислимо координати вектора a як різницю координат кінця A(1;3) та початку O(0;0):

A(1-0;3-0)=(1;3).

Пошаговое объяснение:

Обчислимо довжину (модуль) вектора a(1;3):

довжина вектора

Такі ж операції проводимо для вектора с:

O(0;0), C(3;1).

Координати вектора c знаходимо через різницю координат кінця C(3;1) та початку O(0;0):

c(3-0;1-0)=(3;1).

Через корінь квадратний з суми квадратів координат знаходимо довжину (модуль) вектора c(3;1):

модуль вектора

Скалярний добуток векторів a(1;3) і c(3;1):

a•c=1•3+3•1=6.

4,6(44 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ