М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
polinapiterskog
polinapiterskog
30.08.2021 18:12 •  Математика

Найти значение суммы 111 плюс 333 плюс 555 плюс 777 плюс 999 2) замени слагаемых нулями несколько цифр так чтобы значение суммы стало равно 1111 3) какие еще значения сумму можно получить за меня и слагаемых такое же количество цифр нулями? лучити как можно больше таких суммы найдите значение

👇
Ответ:
nekrasovlesha1
nekrasovlesha1
30.08.2021
1)111+333+555+777+999=2775; 2)111+333+500+77+90=1111; 3)не знаю как. ..
4,7(72 оценок)
Открыть все ответы
Ответ:
BlaBla1aquamarine
BlaBla1aquamarine
30.08.2021

Зимние Олимпийские игры 2014 (англ. 2014 Winter Olympics, фр. Jeux Olympiques d'hiver de 2014, официальное название XXII Олимпийские зимние игры) — международное спортивное мероприятие, проходившее в российском городе Сочи с 7 по 23 февраля 2014 года. Столица Олимпийских игр — 2014 была выбрана во время 119-й сессии МОК в Гватемале 4 июля 2007 года[⇨]. На территории России Олимпийские игры во второй раз (до этого в Москве в 1980 году летние Олимпийские игры), и впервые — зимние Игры. По окончании Олимпийских игр на тех же объектах были проведены зимние Паралимпийские игры.

Игры в Сочи являются двадцать вторыми (XXII) зимними по счёту (символично, что двадцать вторыми летними были и Игры 1980 года в Москве). По сравнению с Играми 2010 года в Ванкувере количество соревнований в различных дисциплинах увеличено на 12, в общей сложности было разыграно 98 комплектов медалей

Пошаговое объяснение:

4,7(89 оценок)
Ответ:
vbv551
vbv551
30.08.2021

Сколькими можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,

 а) считаются различными?

 б) считаются тождественными?

Решение

 а)  106 = 26·56.  Каждый множитель однозначно определяется количеством двоек и пятёрок, входящих в его разложение. Поэтому задача сводится к разложению шести белых и шести чёрных шаров по трём различным ящикам. Аналогично задаче 30729 получаем б) Есть ровно одно разложение, не зависящее от порядка сомножителей, – в нём все множители равны 100. Те разложения, в которых есть ровно два равных множителя, мы в п. а) сосчитали трижды. В каждый из равных множителей 2 может входить в степени 0, 1, 2 или 3, то есть четырьмя различными столькими же может входить 5. Всего получаем 16 разложений такого вида, но одно из них – рассмотренное выше разложение 100·100·100. Количество разложений с тремя различными множителями равно  784 – 1 – 3·15 = 738.  Каждое из них мы сосчитали 6 раз. Всего получаем

1 + 15 + 738 : 6 = 139  разложений.

Пошаговое объяснение:

4,8(38 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ