1 час
Пошаговое объяснение:
S=18 3/4=18,75 км
Время по течению - 1 1/2= 1,5 часа
Скорость течения реки V=2 1/2=2,5 ч.
На сколько больше времени необходимо на обратный путь?
1) Вычислим скорость катера по течению реки -
V=S/t
V по теч.=18,75:1,5=12,5 км/час
2) Вычислим собственную скорость
катера -
V собств.=V по теч.-V теч.реки
V собств.=12,5-2,5=10 км/час
3) Вычислим скорость катера против течения реки -
V прот.теч.=V собств.-V теч.реки
V прот.теч.=10-2,5=7,5 км/час
4) Вычислим время необходимое на обратный путь -
t=S/V
t против теч.=18,75:7,5=2,5 часа
5) Вычислим на сколько больше времени понадобилось на обратный путь -
t пр.теч.-t по теч.=2,5-1,5=1 час
ответ: на обратный путь понадобилось на 1 час больше.
Число игр, в которых участвовала команда, в любой момент находится в пределах от 0 до N-1. При этом не может так оказаться, что одна команда сыграла 0 матчей, а какая-то сыграла все N-1. Значит, всегда есть повторения, что является сюжетом известной задачи.
Рассмотрим N-1 команду кроме A. Число игр изменяется в тех же пределах, и значения 0 и N-1 по-прежнему несовместимы. Если все значения разные, то это или от 0 до N-2 включительно, либо от 1 до N-1.
В первом случае есть команда, которая ни с кем не играла. Если её исключить из рассмотрения, то кроме A останется N-2 команды со значениями от 1 до N-2. Тогда последняя из них играла со всеми, включая A. Если и эту команду исключить из рассмотрения, то помимо A останется N-3 команды со значениями от 0 до N-4, и с ними A играла 12 раз. Далее через два шага мы получим N-5 команд со значениями от 0 до N-6, с которыми A играла 11 раз, и так далее.
Получается, что при значениях игр команд от 0 до N-2k, команда A с ними провела 14-k встреч. Так мы дойдём до k=13, и окажется, что A играла одну встречу с N-25 командами, у которых значения лежат в пределах от 0 до N-26 включительно. Отсюда следует, что N=27 или N=28. Сами эти значения подходят, так как данная процедура может быть проделана в обратном порядке с получением расписания. При N>28 следующий шаг даёт противоречие: если команда A не играла ни с кем из оставшихся, то там не могло получиться попарно различных значений, если остались по крайней мере двое.
Во втором случае, при значениях от 1 до N-1, есть команда, игравшая со всеми. Тогда её, как и выше, исключаем. Получается, что A провела 12 встреч с командами, у которых количество игр принимает значения от 0 до N-3 (значение N-1 исчезло, а остальные уменьшились на 1). Видно, что при уменьшении на единицу числа игр A, правая граница значений для остальных команд уменьшается на 2. Значит, при уменьшении числа игр A ещё на 11 (оно станет равным 1), получатся границы от 0 до N-25, откуда следует, что N=26 или N=27, причём эти значения подходят.
Таким образом, в турнире могло участвовать 26, 27 или 28 команд; сумма этих значений равна 81