ответ с телефона все время срывается, попробую снова. 1 ход. Сильвер выиграет, если сразу выпадет 6. Вер-сть 1/6=6/36. Бонс выиграет, если у Сильвера выпадет от 1 до 5 (вер-сть 5/6), а у Бонса 6 (вер-сть 1/6). Общая вер-сть Р1=5/6*1/6=5/36). В остальных случаях не выиграет никто (вер-сть 1-6/36-5/36=25/36). 2 ход. Тут тоже самое. С вер-тью 6/36 выиграет Сильвер, с вер-тью 5/36 Бонс. В итоге Бонс выиграет на 2 ходу с вер-тью Р2=5/36*25/36. Получаем убывающую геометрическую прогрессию. b1=5/36, q=25/36. Сумма этой прогрессии и есть общая вероятность выиграть для Бонса S=b1/(1-q)=(5/36):(1-25/36)=(5/36):(11/36)=5/11.
Билет №1 Теоретическая часть. 1. Вопрос: Какая функция является линейной? ответ: Линейной является функция вида: f=kx+b. 2. Вопрос: Как умножить степени с одинаковыми основаниями? ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней. Билет №2: Теоретическая часть. 1. Вопрос: Что является графиком линейной функции? Как можно построить такой график? ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой. 2. Вопрос: Как разделить степени с одинаковыми основаниями? ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним. Билет №3 Теоретическая часть. 1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат: ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции). Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0). В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b). 2. Вопрос: Как возвести степень в степень? ответ: Чтобы возвести степень в степень нужно перемножить степени. Например: P. s: Решать практическую часть не буду, т.к могу ошибиться...
8/9 ·18/5 · (-21/10х) = 2016/100
После сокращений получим:
16/5 · (-21/10х) = 2016/100
-21/10х = 2016/100 : 16/5
-21/10х = 2016/10 · 5/16
-21/10х = 63/10
-х = 63/10 : 21/10
-х = 63/10 · 10/21
-х = 3
х = -3