Предполагаем, что тут самый простой случай- голубь сидит на краю крыши, а перелетать голуби будут по кратчайшей траектории- по прямой.
В соответствии с этим нарисуем эскиз к этой задаче (схему, где будет видно, что и как расположено). Смотри эскиз внизу- чёрным там изображены дом и фонарь, а цветными кружками и линиями- начальное положение и траектория полёта каждого голубя. Искомое расстояние от дома до зерна обозначено как икс.
Видим два прямоугольных треугольника, катеты которых проходят по поверхности земли, и по стене дома и опоре фонаря.
Гипотенузы этих треугольников- равные (ведь голуби, летящие с одинаковыми скоростями, преодолели это расстояние за одинаковое время).
1) Решить можно просто визуально- заметно, что треугольники одинаковы, и это подтверждает то, что сумма двух катетов, проходящих по земле, равна 31 м- точно так же, как и сумма двух других катетов, тоже равна 24 + 7 = 31 м.
То есть, можно понять, что каждый треугольник будет иметь катеты 24 м и 7 м. Значит, искомое расстояние равно 7 м.
2) Можно составить уравнение, исходя из того, что гипотенузы равны, а значит их квадраты тоже равны, а в прямоугольном треугольнике- квадрат гипотенузы равен сумме квадратов катетов.
Получаем следующее уравнение:
Решаем его:
ответ: Лена рассыпала зерно на расстоянии 7 м от дома.
y*=(x^2(1-x)^2)*=(x^2)*(1-x)^2+x^2((1-x)^2)*=2x(1-x)^2+x^2*2(1-x)*(1-x)*=2x(1-2x+x^2)+x^2(2-2x)*(-1)=2x-4x^2+2x^3-2x^2+2x^3=4x^3-6x^2+2x
Теперь то, что получилось (жирный шрифт) приравниваем к нулю и решаем:
4x^3-6x^2+2x=0
x(4x^2-6x+2)=0
x=0; 4x^2-6x+2=0
2x^2-3x+1=0
D=(-3)^2-4*2*1=1
x1=1
x2=0.5
Дальше строим ось X и отмечаем точки в порядке возрастания.
Надеюсь вам знаком метод интервалов.
в результате получается, что Xмин = 0 и 1, а Xмах=0,5
Теперь подставляем в исходное уравнение (y=x^2(1-x)^2)
Yнаим=Y(0)=0^2(1-0)^2=0
Yнаиб=Y(0.5)=0.5^2(1-0.5)^2=0.25*0.25=0.0625
ответ: Yнаим=0; Yнаиб=0,0625