1. Не существует такого натурального числа которое являлось бы делителем любого натурального числа.Неверно
2. Одним из кратных натурального числа m является само число m Верно
3. Любое натуральное число имеет бесконечно много делителей Верно
4. Если число делится без остатка на 10, то оно не кратно 2 Неверно
5. Если число кратно 9, то оно делится без остатка на 3 Верно
6. Разность двух нечетных чисел-число нечетное Неверно
7. Если знаменатель одной из двух дробей кратен знаменателю второй, то он является наименьшим общим знаменателем этих двух дробей. Неверно
8.Если число кратно 9, то оно делится без остатка на 3. Верно
основные вопросы, рассматриваемые на лекции:
1. постановка численного дифференцирования
2. численное дифференцирование на основе интерполяционных формул ньютона
3. оценка погрешности дифференцирования с многочлена ньютона
4. численное дифференцирование на основе интерполяционной формулы лагранжа
5. оценка погрешности численного дифференцирования с многочлена лагранжа
постановка численного дифференцированияфункция y = f(x) задана таблицей:
на отрезке [a; b] в узлах a = x0 < x1 < x2 < : < xn =b< /x. требуется найти приближенное значение производной этой функции в некоторой точке х* [a; b]. при этом х* может быть как узловой точкой, так и расположенной между узлами.
· численное дифференцирование на основе интерполяционных формул ньютона
считая узлы таблицы равноотстоящими, построим интерполяционный полином ньютона. затем продифференцируем его, полагая, что f '(x) φ'(x) на [a; b]:
(1) формула значительно , если производная ищется в одном из узлов таблицы: х* = xi = x0 + ih: (2) подобным путём можно получить и производные функции f (x) более высоких порядков. однако, каждый раз вычисляя значение производной функции f (x) в фиксированной точке х в качестве х0 следует брать ближайшее слева узловое значение аргумента.
· численное дифференцирование на основе интерполяционной формулы лагранжа
запишем формулу лагранжа для равноотстоящих узлов в более удобном виде для дифференцирования: затем, дифференцируя по х как функцию от t, получим: пользуясь этой формулой можно вычислять приближённые значения производной таблично-заданной функции f (x) в одном из равноотстоящих узлов. аналогично могут быть найдены значения производных функции f(x) более высоких порядков.
На участке длиной 40 м и шириной 25 м фермер вырастил картофель. С каждого ара он собрал в среднем по 3 ц картофеля. Сколько центнеров картофеля он собрал с этого участка ? Сколько картофеля при такой урожайности можно собрать с участка площадью 1 га?
Участок S=?
Длина=40м
Ширина=25м
С 1ара= 3ц картофеля
Со всего участка=? Ц
Если по 3ц/ар участок S=1га=?ц
S(площадь)= 40•25= 1000м^2
1ар=100м^2
1000:100=10ар S участка
10•3=30ц собрал с участка 10 ар
В тоннах; 1т=10ц; 30:10=3т собрал
ответ: с участка 10ар собрал фермер 30 центнеров картофеля
1га= 10000м^2=100ар
1•100=100ар участок
100•3=300 ц собрал с участка 1 га
В тоннах 300:10=30т
ответ: с участка 1 га можно собрать 300 центнеров картофеля