Добрый день! С удовольствием помогу вам решить вашу задачу.
Для начала, давайте разберемся, что такое выборочное среднее и выборочная дисперсия.
Выборочное среднее (X̄) - это среднее арифметическое значения всех элементов выборки.
Чтобы его посчитать, нужно сложить все значения в выборке и разделить полученную сумму на количество элементов выборки.
Выборочная дисперсия (S²) - это мера разброса значений в выборке относительно выборочного среднего. Она показывает, насколько значения разнятся друг от друга.
Чтобы ее посчитать, нужно вычислить сумму квадратов разностей каждого значения выборки и выборочного среднего, а затем разделить полученную сумму на количество элементов выборки минус один.
Теперь приступим к решению вашей задачи.
У нас есть следующие значения: 8, 10, 7, 9, 11, 6, 9, 8, 10, 7.
Шаг 1: Найдем выборочное среднее.
Сложим все значения выборки:
8 + 10 + 7 + 9 + 11 + 6 + 9 + 8 + 10 + 7 = 85
Теперь разделим полученную сумму на количество элементов выборки (в данном случае 10):
85 / 10 = 8.5
Ответ: выборочное среднее равно 8.5.
Шаг 2: Найдем выборочную дисперсию.
Вычислим сумму квадратов разностей каждого значения выборки и выборочного среднего:
Чтобы найти площадь всего поля, нужно выяснить площадь одного участка и затем умножить ее на количество участков.
Для этого нам даны размеры одного участка: 32 метра на 16 метров. Чтобы найти площадь участка, нужно умножить длину на ширину.
Площадь одного участка = 32 метра * 16 метров = 512 метров квадратных.
Теперь у нас есть площадь одного участка - 512 метров квадратных. Чтобы найти площадь всего поля, нужно умножить площадь одного участка на количество участков.
Площадь всего поля = 512 метров квадратных * 9 участков = 4608 метров квадратных.
Таким образом, площадь всего поля составляет 4608 метров квадратных.
1.225÷0.35=3.5
ответ:3.5.