Основанием пирамиды является прямоугольный треугольник с катетами 6 и 8, высота пирамиды 12 . найти длины боковых ребер пирамиды, если известно что они равны. решите !
Построим высоту АН к стороне ВС. в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН. известно, что АВ = 10, пусть АН = ВН = х, тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный. угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов. пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3 АС=2*5 корней из 2/3= 10 корней из 2/3
В первую очередь нужно помнить, что если перед скобкой стоит знак минус, то все слагаемые, находящие в скобке, перепишутся (при раскрытии скобок) с противоположным знаком. К примеру: -(а-с)=-а+с.Если же перед скобкой стоит знак "плюс", то слагаемые в скобке переписываем с тем же знаком. К примеру: (х-у)=х-у.
Теперь приведём подобные слагаемые: 8+16-12х-18х=15+12-15х-3х 24-30х=27-18х
Теперь, всё, что с х, перенесём влево, а обычные числа перенесём вправо. Хочу заметить, что при переносе числа или выражения по другую сторону знака равно знак числа или выражения меняется на противоположный.
-30х+18х=27-24 -12х=3
Разделим обе части уравнения на "-12", таким образом выразив х.