Если рядом сидят два химика, то правый скажет правду: НЕТ. Если рядом сидят два алхимика, то правый соврет: НЕТ. Таким, образом, ответ НЕТ возникает в том случае, если рядом сидят два одинаковых человека: два химика или два алхимика. Допустим, у нас n химиков. Тогда ряд из (n+1) рядом сидящих алхимиков дает n ответов НЕТ. Ряд надо составлять из алхимиков, чтобы химиков получилось минимальное, а не максимальное количество. Пусть все химики сидят через одного с алхимиками. ХАА...АХАХА...ХА Разобьем их на пары (ХА)А...А(ХА)(ХА)...(ХА) Здесь n А подряд и n пар ХА. Всего n + n А и n Х. n + n + n = 160 3n = 160 Но 160 не делится на 3, поэтому такого не может быть. Значит, есть хотя бы одна пара Х подряд. (ХА)(ХХ)А...А(ХА)(ХА)...(ХА) Здесь 2 химика, еще (n-2) пары ХА и ряд из n А. Химиков по-прежнему n, а алхимиков n + (n-2) n + n - 2 + n = 160 3n - 2 = 160. 3n = 162 n = 54
Арабские цифры изобрели совсем не арабы. Они просто высоко оценили преимущества их, по сравнению с римской и греческой системами, которые считались самыми совершенными в мире на тот момент. Но ведь гораздо удобнее отображать бесконечно большие числа лишь десятью знаками. Главным достоинством арабских цифр является не удобство написания, а сама система, так как она является позиционной. То есть положение цифры влияет на значение числа. Так люди определяют единицы, десятки, сотни, тысячи и так далее. ... А девятка, нетрудно догадаться, из девяти. Вот почему цифры называются арабскими: ими было придумано оригинальное начертание. Гипотезы. Сегодня нет однозначного мнения насчет формирования написания арабских цифр
2) 50 • 6 = 300 ( см )
ответ 300 см ( или 3 м )