В жизни часто приходится встречаться с различными совокупностями объектов, объединёнными в одно целое по некоторому признаку. Для обозначения этих совокупностей используются различные слова. Например, говорят: «стадо коров», «букет цветов», «команда футболистов» и т. д.
В математике в целях единообразия для обозначения совокупностей употребляется единый термин — множество. Например, говорят: множество чётных чисел, множество двузначных чисел, множество правильных дробей со знаменателем 5.
Термин «множество» употребляется и тогда, когда речь идёт о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек координатной плоскости, о множестве прямых, проходящих через данную точку.
Объекты или предметы, составляющие множество, называют элементами множества. Например, число 89 — элемент мнoжества двузначных чисел; точка В — элемент мнoжества вершин многоугольника ABCDE.
Множeства бывают конечные и бесконечные. Например, множество двузначных чисел — конечное множество (оно содержит 90 элементов), а множество чётных чисел — бесконечное множество.
Пошаговое объяснение:
"Центр тяжести тела
Подобно тому, как задача о вычислении центра тяжести плоской фигуры вычислялась с двойного интеграла, задача об отыскании центра тяжести тела решается аналогичным с тройного интеграла."
z0 = integral(z*dx*dy*dz) / integral(dx*dy*dz)
причем по z пределы интегрирования от 0 до 2/3, поскольку поверхность sqrt(x^2+y^2)=2 пересекает конус 3z=sqrt(x^2+y^2) как раз при z=2/3
integral(z*dx*dy*dz) = integral(z*(pi*2^2-pi*9*z^2)*dz) = pi* integral((4z-9*z^3)*dz) = pi*(4z^2/2-9z^4/4) от 0 до 2/3 = pi*(4(2/3)^2/2-9*(2/3)^4/4) = 1.3962634
integral(dx*dy*dz) = integral((pi*2^2-pi*9*z^2)*dz) = pi* integral((4-9*z^2)*dz) = pi*(4z-9z^3/3) от 0 до 2/3 = pi*(4*(2/3)-9*(2/3)^3/3) = 5.5850536
z0 = 1.3962634/5.5850536 = 0.25
-1/3х + 3х = 4 1/11 - 1/11
-1/3х + 9/3х = 4 1/11
8/3 х = 45/11
х = 45/11 : 8/3
х = 45/11 * 3/8
х = 15/11
х= 1 4/11