Пусть треугольник будет ABC, и AB=BC=4см, AC=2см. Сделаем дополнительное построение - проведем высоту BD. Так как треугольник ABC является равнобедренным, а высота BD проведена к основанию этого равнобедренного треугольника, то она будет являться также и медианой треугольника, а, следовательно, (см). Найдем BD по теореме Пифагора из треугольника ABD:
(см)
Известно, что площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты. Воспользуемся этим фактом для вычисления площади треугольника. Для нашего случая площадь треугольника ABC будет равна:
576 = 2 * 2 * 2 * 2 * 2 * 2 * 3 * 3
810 = 2 * 3 * 3 * 3 * 3 * 5
НОД (576 и 810) = 2 * 3 * 3 = 18 - наибольший общий делитель
576 : 18 = 32
810 : 18 = 45
ответ: НОД (576 и 810) = 18.