Для начала проверим, будет ли делиться на 3 число, состоящее из 666 единиц. Если сумма цифр числа делится на три, то и само число будет делиться на три.
1 * 666 = 666;
6 + 6 + 6 = 18, делится на 3;
значит и число из 666 единиц делится на 3.
Начнем делить число в столбик
Начнем делить число 111...111 на 3 в столбик.
11 : 3 = 3 (остаток 2, спускаем вниз 1);
21 : 3 = 7 (остатка нет, спускаем 1);
1 : 3 = 0 (остаток 1, спускаем 1);
11 : 3 = 3 (остаток 2, спускаем 1);
21 : 3 = 7 (остаток 0, спускаем 1);
1 : 3 = 0 (остаток 1, спускаем 1);
11 : 3 = 3 (остаток 2, спускаем 1), то есть все повторяется.
Найдем закономерность повторений.
Получается ответ: 370370...
Высчитаем количество цифр получившегося числа
Все число, состоящее из 666 единиц, можно разбить на тройки по три единицы (111, 111).
Мы начали делить с 11 (двузначное) на 3, получилось 3 (однозначное, то есть число будет меньше на один разряд).
Значит, число будет состоять из 665 цифр. Каждая тройка единиц даст в ответе три цифры, из которых один ноль, кроме первых трех единиц, они дадут две цифры.
То есть число будет выглядеть так: 37 037 037...037.
Посчитаем количество нулей в получившемся числе: 666 : 3 = 222. Но так как в первой тройке нет нуля, значит, 222 - 1 = 671.
ответ: В получившемся числе будет 221 ноль.
1. 333; 549
Число делится на 9, если сумма всех его цифр делится на 9
609; 6+0+9=15 нет
333; 3+3+3=9, 9/9=1
59; 5+9=14 нет
549; 5+4+9=18, 18/9=2
2. 720: 748
Число делится на 2, если последняя его цифра - чётная
0 и 8 - четные;
5 и 1 - не четные
3. 819=3*3*7*13=13*7*3²
819 | 3
273 | 3
91 | 7
13 | 13
1
4. НОД(72,60)=12
72 | 2
36 | 2
18 | 2
9 | 3
3 | 3
1
60 | 2
30 | 2
15 | 3
5 | 5
1
2*2*3=12 НОД - произведение общих множителей чисел
НОК (72,60)=360
2*2*2*3*3*5 = 72* 5 = 360 Чтобы найти НОК, - простые множители большего числа умножить на недостающие множители из меньшего числа.
5. Новое число делится на 3, потому, что число делится на 3, если сумма его цифр делится на 3, а при перестановке мест слагаемых сумма не меняется.
6. Не может, потому, что простое число делится только на 1 и само себя.
Дано: число 3a+6b, где a и b - натуральные числа
3a+6b=3(a+2b) - это число делится на 1, на само себя, на 3 и на (a+2b)
7. 0; 6; 9
951*
Последняя цифра - от 0 до 9
9+5+1+*=15+*
Максимум: 15+9=24
от 15 до 24 на 3 делятся: 15 (15+0); 18 (15+3); 21 (15+6); 24 (15+9)
на 9 делятся: 18 (15+3)