надо провести высоту пирамиды.
Проведем DO — высоту пирамиды и перпендикуляры DK, DM и DN к соответствующим сторонам ΔАВС.
по теореме о трех перпендикулярах OK ⊥ ВС, ОМ ⊥ АС и ON ⊥ AB. Где ∠DKO = ∠DMO = ∠DNO = 60° — линейные углы данных двугранных углов.
следовательно, треугольники DKO, DMO и DNO равны по катету и острому углу. Тогда OM = OK = ON, то есть точка О является центром окружности, вписанной в основание.
по теореме пифагора в прямоугольном ΔAВС:
найдем площадь ΔAВС
S=1/2*АС*АВ=1/2*6*8=24 кв см
с другой стороны S=pr=24/112= 2 см
тогда ΔDMO
DO=MO*tg60=r Нашли высоту пирамиды
Теперь надо по теореме пифагора найти высоты боковых граней в ΔDКO
DO^2+OK^2=DK^2
Sобщ= Sabc+Sabd+Sacd+Sbcd=24+1/2*6*4+1/2*8*4+1/2*10*4=
=24+12+16+20=72 кв см
если только боковая, то
Sбок =Sabd+Sacd+Sbcd=1/2*6*4+1/2*8*4+1/2*10*4=
=12+16+20=48 кв см
Если в 3 коробке 4 карандаша, то в 1 коробке может быть 5 и более карандашей, а во 2 коробке - 3 и менее карандашей. Тогда распределение может получиться таким:
1 коробка 2 коробка 3 коробка Всего
5 3 4 12
6 2 4 12
7 1 4 12
8 0 4 12
ответ: задача имеет 4 решения.
4дм2=40см2
96м2=960см2
960см2/40см2=24 плитки