Нуль на конце числа получается, если данное число можно разложить на множители, среди которых будут 2 и 5. Поэтому количество нулей на конце числа зависит от того, сколько 5 (пятёрок) входит в состав его множителей, так как на промежутке от 20 до 60 чётных чисел предостаточно.
Числа 20, 30, 35, 40, 45, 55, 60 содержат по одной 5. Всего 7.
Числа 25 и 50 содержат по две 5. Всего 4.
7+4=11
ответ: произведение всех натуральных чисел от 20 до 60 ВКЛЮЧИТЕЛЬНО заканчивается 11 нулями.
Если множитель, равный 60, не включать в данное произведение, то оно будет оканчиваться на 10 нулей.
1)41\84-5\21=41\84-20\84=21\84=1\4
2)4-1\4=3 4\4-1\4=3 3\4
3)3 3\4+7 11\30=3 90\120+7 44\120=10 134\120=11 14\120=11 7\60