а)
Построение
1. Допустим, что MN не параллельна АВ.
2. Продолжим MN и АВ до пересечения их в т. О.
3. ОК ⊂ пл. АВС (т.к. О ∈ АВС и K ∈ АВС).
4. Соединим точки K и N.
5. Плоскости ONK и ОАK (то есть пл. АВС) пересекаются по прямой OK.
6. Поэтому продолжим OK до пересечения с DC в т. L. Соединим точки K и L - ведь они лежат в одной плоскости.
7. Противоположные грани АА1В1В и DD1C1C секущая плоскость пересечет по параллельным прямым (по теореме II), поэтому в плоскости DD1C1C проведем LP || NM.
8. Соединим т. Р и т. М.
9. MNKLP - искомое сечение.
ВОТ НАДЕЮСЬ
Пошаговое объяснение: №1 ΔКОL-прямоугольный, т.к. радиус ОК⊥КL (касательная перпендикулярна радиусу, проведённому в точку касания), ⇒КL= OK·tg60° = 6·√3 №2. Δ ОMN -прямоугольный, т.к. радиус ОN⊥MN (касательная перпендикулярна радиусу, проведённому в точку касания), по условию ON=1/2 ·OM (9=1/2 ·18) ⇒∠NMO=30° (по св-ву катета, лежащего против угла в 30°), ⇒∠NMK =30°·2=60° (по св-ву касательных, проведённых из одной точки к окружности). №3. ΔОАВ -равносторонний, т.к. ОА=ОВ=R(радиусы окружности), а ОА =АВ по условию, ⇒ОА=ОВ=АВ, ⇒все углы треугольника равны по 60°, ⇒∠ОАВ=60°. ∠ОАС=90° (касательная перпендикулярна радиусу)⇒∠ВАС=90°-60°°=30°. №4 ΔОАВ -равносторонний, т.к. ОА=ОВ=R(радиусы окружности), а ОА =АВ по условию, ⇒ОА=ОВ=АВ, ⇒все углы треугольника равны по 60°, ⇒∠ОАВ=60°. ∠ОАС=90° (касательная перпендикулярна радиусу)⇒∠ВАМ=90°-60°°=30°. Но ΔАМВ равнобедренный (по св-ву касательных, проведённых из одной точки М)⇒∠АВМ=∠∠ВАМ=30°, тогда ∠АМВ= 180° -(30°+30°)= 120°.