5) если один множитель увеличить в k раз, а другой — уменьшить в m раз (k> m), то произведение увеличится в k: m раз: (a х k) х (b: m) = c х (k: m) пример: 8 х 6 = 48 первый множитель 8 увеличим в 14 раз, а второй множитель 6 — уменьшим в 2 раза: 112 х 3 = 336 произведение 336 по сравнению с первоначальным 48 увеличилось в 7 раз, 7=14: 2. тот же результат получим, если первый множитель 8 уменьшим в 2 раза, а второй — 6 — увеличим в 14 раз: 4 х 84 = 336 ну думаю этого вполне хватит для оценки 5+
Задача несложная и решается прямыми последовательными выкладками. Сперва доказываем, что четырехугольник (из условия задачи - равнобочная трапеция) АМКД лежит в одной плоскости с треугольником АМК: т. к. точки М и К середины сторон SB и SC треугольника BSC, следовательно линия MK является средней линией треугольника BSC, а следовательно параллельна его основанию BC. Т. к. ABCD основание правильной четырехугольной пирамиды с равными ребрами, то ABCD есть квадрат и MK параллельна AD. Отрезки DK и АМ пересекаются одновременно с MK и АD каждая, следовательно они лежат с MK и AD в одной плоскости. Далее понятно. Теперь, чтобы найти угол между пересекающимися плоскостями, нужно найти угол между перпендикулярами, восстановленными из точки прямой пересечения плоскостей в каждой плоскости. обозначим эту точку О. Пусть это будет перпендикуляр, опущенный из вершины S треуголmника ADS. В плоскости AMKD восстановим перпендикуляр из точки О, он пересечет отрезок MK в точке L. Теперь наша задача сводится к: 1) нахождению угла SOL в образовавшемся треугольнике SOL 2) нахождению угла SLO в треугольнике SOL Т. к. все ребра в правильной пирамиде равны, то все грани пирамиды есть равносторонние треугольники с углами при основании 60. Тут проще работать с проекцией треугольника SOL, но я не буду этого делать, а вычислю все стороны треугольника и исходя из теоремы косинусов найду требуемые по условию задачи углы. Итак, OL можно найти как высоту равнобочной трапеции. Находим разность оснований, делим на 2, и по теореме пифагора находим высоту. OL=корень (АМ^2 - [(AD-MK)/2]^2 AD=4; MK=BC/2=4/2=2; AM =2*корень (3) - высота равностороннего треугольника со стороной 4. OL=корень (11) SO=2*корень (3) - т. к. есть высота равностороннего треугольника со стороной 4. SL=корень (3) - т. к. есть половина высоты равностороннего треугольника Теперь из теоремы косинусов получаем: 3=12+11-2*2*корень (3)*корень (11)*cos(SOL) ==> угол (SOL)=arccos(5/корень (33)) 12=3+11-2*корень (3)*корень (11)*cos(SLO) ==> угол (SLO)=arccos(1/корень (33))
2475%
?100%
24*100:75=32 леденца было