Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
У маленького четырёхугольника, который только родился в Петиной тетради, были родители: папа-параллелограмм и мама-квадрат. И вот задумались они, как же сыночка назвать. Спорят: папа говорит:"Он похож на меня - вон какие у него углы- не то что у тебя, жена, прямые. Значит, имя придумывать буду я." Жена ему отвечает: "Вот ещё! Хоть углы и не прямые, зато все стороны-то равные, как у меня! Я буду называть!" Услышал их спор Петя-ученик и говорит: "Эх, вы! Он похож и на маму, и на папу, а самое главное, что имя ему давно уже существует- ведь это ромб!" Посмотрели папа с мамой ещё раз внимательно на сыночка и согласились: "Молодец, Петя тебе". И стали они втроём жить-поживать в Петиной тетради. Об их приключениях вы узнаете в следующей сказке.