М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
moskalkov
moskalkov
14.05.2021 13:00 •  Математика

Напишите краткую запись.в саду собрали 840 ц яблок. это в 2 раза больше чем груш .все эти фрукты разложили в ящики по 14 кг . сколько ящиков получилось?

👇
Ответ:
ekzz1
ekzz1
14.05.2021
х - груши, 2х - яблоки ( 840 ц) 14 ящиков
4,4(28 оценок)
Ответ:
newagain
newagain
14.05.2021
840 (ц) ябл... - собрали в саду А груш в 2 раза больше Все фрукт разложили в ящики по 14 кг Щас ответ будет...
4,4(69 оценок)
Открыть все ответы
Ответ:
Проведем высоту трапеции Н через точку К. Она точкой К делится пополам, так как эта точка лежит на средней линии трапеции. Таким образом, высоты обоих указанных треугольников равны Н/2.

Площадь треугольника равна половине произведения основания на высоту. Запишем это для каждого треугольника.

S(BKC) = 1/2*BC*H/2
S(AKD) = 1/2*AD*H/2

Площадь же трапеции равна полусумме оснований, умноженной на высоту. Запишем и это:

S(ABCD) = 1/2*(BC + AD)*H

Раскроем скобки:

S(ABCD) = 1/2*BC*H + 1/2*AD*H = 2*S(BKC) + 2*S(AKD) = 2*(S(BKC) + S(AKD)).

Таким образом: 
S(BKC) + S(AKD) = S(ABCD):2.

Что и требовалось доказать.
4,6(74 оценок)
Ответ:
Проведем высоту трапеции Н через точку К. Она точкой К делится пополам, так как эта точка лежит на средней линии трапеции. Таким образом, высоты обоих указанных треугольников равны Н/2.

Площадь треугольника равна половине произведения основания на высоту. Запишем это для каждого треугольника.

S(BKC) = 1/2*BC*H/2
S(AKD) = 1/2*AD*H/2

Площадь же трапеции равна полусумме оснований, умноженной на высоту. Запишем и это:

S(ABCD) = 1/2*(BC + AD)*H

Раскроем скобки:

S(ABCD) = 1/2*BC*H + 1/2*AD*H = 2*S(BKC) + 2*S(AKD) = 2*(S(BKC) + S(AKD)).

Таким образом: 
S(BKC) + S(AKD) = S(ABCD):2.

Что и требовалось доказать.
4,7(42 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ