Основные функции
\left(a=\operatorname{const} \right)
x^{a}: x^a
модуль x: abs(x)
\sqrt{x}: Sqrt[x]
\sqrt[n]{x}: x^(1/n)
a^{x}: a^x
\log_{a}x: Log[a, x]
\ln x: Log[x]
\cos x: cos[x] или Cos[x]
\sin x: sin[x] или Sin[x]
\operatorname{tg}x: tan[x] или Tan[x]
\operatorname{ctg}x: cot[x] или Cot[x]
\sec x: sec[x] или Sec[x]
\operatorname{cosec} x: csc[x] или Csc[x]
\arccos x: ArcCos[x]
\arcsin x: ArcSin[x]
\operatorname{arctg} x: ArcTan[x]
\operatorname{arcctg} x: ArcCot[x]
\operatorname{arcsec} x: ArcSec[x]
\operatorname{arccosec} x: ArcCsc[x]
\operatorname{ch} x: cosh[x] или Cosh[x]
\operatorname{sh} x: sinh[x] или Sinh[x]
\operatorname{th} x: tanh[x] или Tanh[x]
\operatorname{cth} x: coth[x] или Coth[x]
\operatorname{sech} x: sech[x] или Sech[x]
\operatorname{cosech} x: csch[x] или Csch[е]
\operatorname{areach} x: ArcCosh[x]
\operatorname{areash} x: ArcSinh[x]
\operatorname{areath} x: ArcTanh[x]
\operatorname{areacth} x: ArcCoth[x]
\operatorname{areasech} x: ArcSech[x]
\operatorname{areacosech} x: ArcCsch[x]
[19.67] =19: integral part of (19.67) - выделяет целую часть числа (integerPart)
Пошаговое объяснение:
49.76 см²
Пошаговое объяснение:
Находим сначала площади круга и квадрата :
S=\piπ R² - площадь круга \piπ ≈3,14
S=a² - площадь квадрата
Площадь круга:
Нам известен диаметр d=8см
Если находить радиус через диаметр,то d=2R =>R=\frac{d}{2}
2
d
Вычислим радиус: R=8/2 => R=4 см
Теперь найдём площадь круга:
S=\piπ *4² = 50.24 см²
Площадь квадрата:
Нам известно сторона a = 10 см
Из свойства квадрата : У квадрата все стороны равны ,поэтому:
S=10²=100 см²
Теперь найдём площадь закрашенной фигуры:
Sф=Sкв. - Sкруга => Sф=100 - 50.24 = 49.76 см.
X: -49, -48, -47 и т.д ... 0, 1,2, 49
всего 99 решений