Решение: Если сумма цифр равна 4, значит, в числе могут быть только цифры 0, 1, 2, 3, 4. Пусть 4 — наибольшая цифра, которая есть в искомом числе. Значит, она стоит на первом месте, а три остальные цифры равны нулю — получили число 4000. Если наибольшая цифра — 3, то возможны четыре варианта: 3100, 3010, 1300, 1030. Варианты 3001, 1003 невозможны, так как число с единицей на конце не является чётным. Пусть наибольшая цифра — 2, в этом случае получим числа 2110, 2200, 2020, 2002, 1210, 1120, 1102, 1012. Если наибольшая цифра — 1, то все цифры числа равны 1, но число 1111 нечётное, поэтому такой вариант невозможен. Наконец, числа 0000 не существует. Всего получается 1+4+8+0=13 чисел.
7. а)15
б) Алия
с) Алия и Диана
8. Дано: ∠AOC = 180° Найти: ∠ AOB, ∠BOC — ?
1) Пусть ∠BOC = x°. Тогда ∠AOB = x+40°. По теореме о сумме углов треугольника получаем, что x+x+40 = 180°.
уравнение.
x+x+40 = 180
2x + 40 = 180
2x = 180-40
2x = 140
x = 140:2
x = 70.
∠BOC = 70° ∠AOB = 70+40 = 110°
ответ: 70°, 110°.
9.а)45
P.S (не могу почему то загрузить файл )