Билет №1 Теоретическая часть. 1. Вопрос: Какая функция является линейной? ответ: Линейной является функция вида: f=kx+b. 2. Вопрос: Как умножить степени с одинаковыми основаниями? ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней. Билет №2: Теоретическая часть. 1. Вопрос: Что является графиком линейной функции? Как можно построить такой график? ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой. 2. Вопрос: Как разделить степени с одинаковыми основаниями? ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним. Билет №3 Теоретическая часть. 1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат: ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции). Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0). В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b). 2. Вопрос: Как возвести степень в степень? ответ: Чтобы возвести степень в степень нужно перемножить степени. Например: P. s: Решать практическую часть не буду, т.к могу ошибиться...
Первое же трехзначное число 100 в квадрате оканчивается на 4 нуля. Если же повторяющаяся цифра должна быть НЕ равна 0, то вот. Есть единственное двузначное число, квадрат которого оканчивается тремя одинаковыми цифрами: 38^2 = 1444. Очевидно, что трехзначное число должно быть вида (100a+38) или (100a-38). Выясняем, что подходит три числа: 500-38=462, 500+38=538, 1000-38=962. Их квадраты: 462^2 = 213444, 538^2 = 289444, 962^2 = 925444. Больше таких чисел нет, которые дают 3 ненулевых цифры в конце. ответ: наименьшее 462
4х-длинна другой
(х+4х)×2=20
5х=10
х=2 первая сторона
2×4=8вторая сторона
2×8=16м в квадрате