Пусть
простое число, большее 2 (если
, то
). Тогда
четно. Заметим, что
, случай с 18-ю уже очевидно не подходит. Возможные кандидаты: четные числа от 2 до 16.
Согласно малой теореме Ферма
, вместе с тем
. Сложив оба сравнения, получим
, откуда ясно, что
. Эта процедура похожа на алгоритм Евклида. Повторив такую операцию еще несколько раз, получим
, где
определяется так:
. Но
, то есть
. Тогда
, противоречие.
Есть еще случай, когда, производя операцию (алгоритм Евклида), мы не приходим к 0 (попадаем в цикл). Это происходит тогда и только тогда, когда
. Небольшая проверка дает
:
.
ответ: 
Представим себе последовательность прямоугольных треугольников в системе координат. Ровно один катет треугольника вертикален и ровно один горизонтален. Пусть каждый треугольник "цепляется" вершиной за предыдущий так, что гипотенузы треугольников образуют монотонно снижающуюся ломаную. Тогда неравенство очевидно: кратчайший путь есть отрезок между верхней вершиной первого треугольника в последовательности и нижней вершиной нижнего. Равенство достигается тогда, когда треугольники попарно подобны.
Предположим обратное.
Заметим, что все
, такие что
не подходят. Поскольку 101 является простым, то
взаимно просто со 101. Значит,
.
Более того, согласно малой теореме Ферма
. Значит, порядок числа
по модулю 101 делит как 3, так и 100, но 3 и 100 взаимно просты. Противоречие.

Первый аналитический)
1) Если
, то 





Проверим условие 










Таким образом, если
, то имеем корень 
2) Если
, то 




Найдем такие значения
, при которых 





Тогда корни:

Проверим условие 










![a \in \left[-\dfrac{3}{2}; \ \dfrac{3}{2} \right]](/tpl/images/1359/4428/7966b.png)
С учетом
имеем: 
Таким образом, при
имеем три корня.
Второй графический)
Рассмотрим две функции:

— линейная функция, график — прямая, параллельная оси абсцисс
Изобразим на координатной плоскости функцию 
1) Если
, то
— квадратичная функция, график — парабола, ветви параболы направлены вверх
2) Если
, то
— квадратичная функция, график — парабола, ветви параболы направлены вниз
Вершина параболы: 
Изобразим данные функции на соответствующих участках (см. вложение).
Уравнение
будет иметь три корня, если будет три пересечения графика функции
c 
Так будет, если
или 

Решением системы будет 
Таким образом, при
имеем три корня.
ответ: 
2) 420-180=240 девочек