М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
asetburkutov00
asetburkutov00
18.08.2020 19:43 •  Математика

Найдите значения выражения -2,,6)+4,16: (-40)= 4•(2,3-2х)-2,4(х+1,5)= 12•2,5(3х-5)=4/5(15-10х)= 12,4-х=2,6 х: 1,9=3

👇
Ответ:
Neimeyumozg
Neimeyumozg
18.08.2020
-2,5-(-1,6)+4,16:(-40)=-2,5+1,6-0,14= - 1,04

4(2,3-2х)-2,4(х+1,5)=9,2-8х-2,4х-6,6=2,6-10,4х

12*2,5(3х-5)=4/5(15-10х)
90х-150=12-8х
90х+8х=12+150
98х=162
х=162:98=

12,4-х=2,6
х=12,4-2,6
х=9,8

х:1,9=3
х=3*1,9
х=5,7
4,4(30 оценок)
Открыть все ответы
Ответ:
qwer54321asdfrewq
qwer54321asdfrewq
18.08.2020
Если на чашки весов влезает 20 кг абрикос, то:
Делим ящик на две части и уравновешиваем их на чашках весов. Получаем 2 раза по 20 кг.
Одну часть откладываем в сторону, делим вторую часть еще на две части, уравновешивая их на весах. Получаем 2 по 10 кг. 10 кг откладываем, вторые 10 кг снова весами делим пополам. Получаем 2 по 5 кг.
Откладываем обе части по 5 кг. На весы кладем отложенные 10 кг и из второго ящика отмеряем еще 10 на вторую чашку весов.
Таким образом, мы отмерили следующее количество абрикосов:
   20 кг; 2 по 10 кг и 2 по 5 кг
Теперь нетрудно получить искомое количество абрикосов:
   20 + 10 + 5 = 35 (кг)
   10 + 5 = 15 (кг) 
4,5(8 оценок)
Ответ:
06Sofa07
06Sofa07
18.08.2020

Пошаговое объяснение:

Для удобства набора решения, все \alpha  я заменил на

x

1)

Сначала предварительная подготовка:

\sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) = 1^2 - 2\sin^2(x)\cos^2(x).

То есть

\sin^4(x) + \cos^4(x) = 1^2 - 2\sin^2(x)\cos^2(x) (в цепочке равенств оставил только первый и последний член).

Значит после переноса получаем:

1 - \sin^4(x) - \cos^4(x) = 2\sin^2(x)\cos^2(x).

Теперь работаем с числителем.

\sin^6(x) + \cos^6(x) = (\sin^2(x) + \cos^2(x))^3 - 3\sin^4(x)\cos^2(x) - 3\sin^2(x)\cos^4(x) = 1^3 - 3\sin^2(x)\cos^2(x)(\sin^2(x)+\cos^2(x)) = 1 - 3\sin^2(x)\cos^2(x).

Значит

1 - \sin^6(x) - \cos^6(x) = 3\sin^2(x)\cos^2(x).

Осталось самое приятное: подставить наши результаты в дробь, и понять, что всё получилось

\frac{1 - \sin^4(x) - \cos^4(x)}{1 - \sin^6(x) - \cos^6(x)} = \frac{3\sin^2(x)\cos^2(x)}{2\sin^2(x)\cos^2(x)} = \frac{3}{2}

ч.т.д.

2)

Перемножим дробь "крест-накрест", получим:

(\sqrt{3} - 2\sin(x))(\sqrt{3} + 2\sin(x)) = (2\cos(x) - 1)(2\cos(x) + 1)

по формуле разностти квадратов, получаем:

3 - 4\sin^2(x) = 4\cos^2(x) - 1

переносим в одну часть

4 = 4(\sin^2(x) + \cos^2(x)),

что верно в силу основного тригонометрического тождества. Так как мы тождественными преобразованиями перешли от исходного выражения к тождественному равенству, значит изначально тоже было тождественное равенство, ч.т.д.

4,7(30 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ