44 года ей было.
Пошаговое объяснение:
Ошибаются второй и третий, а первый оказался прав, так как он говорит, что королеве больше 43 лет, значит ей либо 44 лет, либо больше. Поскольку второй и третий ошибаются, значит королеве не больше 44 и не больше 45, а значит ей 44.
Если бы первый и третий ошибались, в второй говорил правду, то получалось бы всё нелогично, так как по этой логике первый говорит неправду, значит королеве не больше 43, но согласно высказыванию второго (который в данном случае прав) ей больше 44, и получается противоречие. Аналогично можно опровергнуть вариант, в котором 1 и 2 говорят неправду, а 3 правду. Остаётся только последний вариант, в котором первый говорит правду, а двое других – неправду, и который оказался верным
ответ:
пошаговое объяснение:
{ 2x + y - z = 5
{ x - 2y + 3z = -3
{ 7x + y - z = 10
определитель delta
|2 1 -1|
|1 -2 3|=2(-2)(-1)+1*1(-1)+7*1*3-7(-2)(-1)-1*1(-1)-1*3*2=4-1+21-14+1-6=5
|7 1 -1|
определитель delta(x)
|5 1 -1|
|-3 -2 3|=5(-2)(-1)+1(-3)(-1)+1*10*3-10(-2)(-1)-1(-3)(-1)-1*3*5=5
|10 1 -1|
x = delta(x) / delta = 5/5 = 1
определитель delta(y)
|2 5 -1|
|1 -3 3|=2(-3)(-1)+1*10(-1)+7*5*3-7(-3)(-1)-1*5(-1)-10*3*2=25
|7 10 -1|
y = delta(y) / delta = 25/5 = 5
определитель delta(z)
|2 1 5|
|1 -2 -3|=2(-2)*10+1*1*5+7*1(-3)-7(-2)*5-1*1*10-1*2(-3)=10
|7 1 10|
z = delta(z) / delta = 10/5 = 2
ответ: (1, 5, 2)