Пошаговое объяснение:
х (км) - расстояние между пунктами
х/30 (км/ч) - скорость первого автомобиля
х/45 (км/ч) - скорость второго автомобиля
х/30 + х/45 = 3х/90 + 2х/90 = 5х/90 = х/18 (км/ч) - скорость сближения
х : х/18 = х * 18/х = 18 (час)
ответ: машины встретятся через 18 часов
ИЛИ
Вместо х можно подставить число:
Допустим, что расстояние = 1800 км, тогда:
1800:30 = 60 (км/ч) - скорость первого автомобиля
1800:45 = 40 (км/ч) - скорость второго автомобиля
60+40 = 100 (км/ч) - скорость сближения
1800:100 = 18 (час)
В решении.
Пошаговое объяснение:
1)Решить систему уравнений методом алгебраического сложения:
7х+2у=20
х-3у= -7
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно второе уравнение умножить на -7:
7х+2у=20
-7х+21у=49
Складываем уравнения:
7х-7х+2у+21у=20+49
23у=69
у=69/23
у=3;
Теперь подставить значение у в любое из двух уравнений системы и вычислить х:
х-3у= -7
х= -7+3*3
х=2.
Решение системы уравнений (2; 3).
Вычислить х+у=2+3=5.
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
2)Решить систему уравнений методом подстановки:
2х+3у=16
х-2у=1
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х=1+2у
2(1+2у)+3у=16
2+4у+3у=16
7у=16-2
7у=14
у=2;
х=1+2у
х=1+2*2
х=5.
Решение системы уравнений (5; 2).
Вычислить х*у=5*2=10.
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.