М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Найди значение выражения наеболее удобным

👇
Ответ:
sludkov
sludkov
23.03.2022
17,9*(47+53)=17.9 * 100 =1790.
4,5(20 оценок)
Открыть все ответы
Ответ:
ArinaBelman18
ArinaBelman18
23.03.2022
Добрый день! Я готов выступить в роли вашего школьного учителя и помочь вам разобраться с этим вопросом.

Для начала давайте вспомним, что такое уравнение. Уравнение - это математическое выражение, где хотя бы у одной переменной есть неизвестное значение, которое мы должны найти.

Итак, нам дано уравнение (f) у = sqrt(x^2 - cx) и уравнение (f): (x^2 + y^2)dx + xdy = 0. Наша задача - показать, что функция у удовлетворяет этому уравнению.

Для того чтобы это сделать, мы должны взять производную от функции у и подставить ее в уравнение (f), чтобы убедиться, что оно выполняется.

Шаг 1: Найдем производную функции у. Для этого нам понадобится использовать правило дифференцирования для функции квадратного корня.

Производная функции у = sqrt(x^2 - cx) будет равна:
u'(x) = (1/2) * (x^2 - cx)^(-1/2) * (2x - c)

Шаг 2: Подставим найденную производную в уравнение (f).

(x^2 + y^2)dx + xdy = 0

Подставим dx = 1 и dy = у'(x):

(x^2 + y^2)* 1 + x * y'(x) = 0

(x^2 + y^2) + x * (1/2) * (x^2 - cx)^(-1/2) * (2x - c) = 0

Шаг 3: Упростим это уравнение и проверим, выполняется ли оно для функции у.

(x^2 + y^2) + (x^2 - cx)^(-1/2) * (2x^2 - cx) = 0

(x^2 + y^2) + (2x^2 - cx) / sqrt(x^2 - cx) = 0

Шаг 4: Для того чтобы показать, что функция у удовлетворяет уравнению (f), мы должны доказать, что это уравнение выполняется для любых значений х и у. В данном случае нам понадобится некоторое алгебраическое преобразование, чтобы продемонстрировать это.

Мы можем умножить обе части уравнения на sqrt(x^2 - cx), чтобы избавиться от знаменателя:

(x^2 + y^2) * sqrt(x^2 - cx) + (2x^2 - cx) = 0

Шаг 5: Теперь давайте проведем некоторые алгебраические вычисления для более простого вида уравнения.

(x^2 + y^2) * sqrt(x^2 - cx) + (2x^2 - cx) = 0
x^2 * sqrt(x^2 - cx) + y^2 * sqrt(x^2 - cx) + 2x^2 - cx = 0
x^2 * sqrt(x^2 - cx) + 2x^2 + y^2 * sqrt(x^2 - cx) - cx = 0
(x^2 + 2x^2) + (y^2 * sqrt(x^2 - cx) - cx) + x^2 * sqrt(x^2 - cx) = 0
3x^2 + y^2 * sqrt(x^2 - cx) + x^2 * sqrt(x^2 - cx) - cx = 0
(3x^2 - cx) + (y^2 * sqrt(x^2 - cx) + x^2 * sqrt(x^2 - cx)) = 0
(x^2 * (3 - c)) + (sqrt(x^2 - cx) * (y^2 + x^2)) = 0

Шаг 6: Видим, что уравнение преобразовалось к виду, где каждая часть состоит из одного слагаемого. Теперь мы можем заметить, что первое слагаемое равняется 0, потому что (3 - c) - это константа. Также заметим, что второе слагаемое также равно 0, потому что (y^2 + x^2) - это выражение, которое всегда положительное, независимо от значений у и х.

Таким образом, мы получаем следующий результат:

x^2 * (3 - c) + sqrt(x^2 - cx) * (y^2 + x^2) = 0

Мы видим, что каждое слагаемое равно 0, и что выполняется уравнение (f): (x^2 + y^2)dx + xdy = 0.

Из этого мы можем сделать вывод, что функция у = sqrt(x^2 - cx) удовлетворяет уравнению (f) при любых значениях х и у.

Я надеюсь, что это решение было понятным и полезным для вас. Если у вас возникнут еще вопросы, не стесняйтесь задавать их. Я всегда готов помочь. Приятного изучения математики!
4,4(22 оценок)
Ответ:
Jek15
Jek15
23.03.2022
Привет! Давай разберемся вместе с этим интересным вопросом о вероятности.

У нас есть ваза с 6 розовыми и 8 красными гвоздиками. Мы хотим узнать, какова вероятность того, что выбраны будут именно три красные гвоздики из этой вазы.

Шаг 1: Выясним общее количество возможных комбинаций. Для этого нам нужно найти количество разных трехгвоздичных букетов, которые можно составить из 14 гвоздик (6 розовых + 8 красных).

Чтобы решить эту задачу, мы можем использовать формулу комбинаторики под названием "биномиальный коэффициент". В данном случае, количество возможных комбинаций из 14 гвоздик по 3 будет выглядеть так:

C(14,3) = 14! / (3! * (14-3)!) = 14! / (3! * 11!)

Знак "!" означает факториал, то есть произведение чисел от 1 до данного числа.

C(14,3) = (14 * 13 * 12 * 11!) / (3 * 2 * 1 * 11!) = (14 * 13 * 12) / ( 3 * 2 * 1) = 364

Таким образом, всего существует 364 возможных комбинации трехгвоздичных букетов из этой вазы.

Шаг 2: Теперь нам нужно найти количество благоприятных комбинаций, то есть количество способов выбрать три красных гвоздики из 8 имеющихся.

Мы можем использовать аналогичную формулу комбинаторики для этого:

C(8,3) = 8! / (3! * (8-3)!) = 8! / (3! * 5!)

C(8,3) = (8 * 7 * 6 * 5!) / (3 * 2 * 1 * 5!) = (8 * 7 * 6) / (3 * 2 * 1) = 56

Таким образом, существует 56 способов выбрать три красных гвоздики из 8 имеющихся.

Шаг 3: Теперь, когда у нас есть количество общих и благоприятных комбинаций, мы можем найти вероятность отобрать три красных гвоздики.

Вероятность (P) вычисляется делением количества благоприятных комбинаций на количество общих комбинаций:

P = количество благоприятных комбинаций / количество общих комбинаций

P = 56 / 364 = 0.1538

Таким образом, вероятность отобрать три красные гвоздики из этой вазы составляет примерно 0.1538 или около 15.38%.

Надеюсь, мой ответ понятен. Если у тебя есть еще вопросы, не стесняйся задавать!
4,6(63 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ