М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SweetLOL
SweetLOL
29.01.2020 18:52 •  Математика

Вычислите значение выражения 16|-х|-5|у|, если х=-51, у=-63

👇
Ответ:
Птичка04
Птичка04
29.01.2020
16|-х|-5|у|= 16*51-5*63=816-315=501
ответ 501.
4,7(93 оценок)
Открыть все ответы
Ответ:
konovalovilya
konovalovilya
29.01.2020
Первое решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 = √6/2. Для площади S этого треугольника имеют место равенства . Откуда находим AH = √3/3

Второе решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Треугольники AOA1 иHOA подобны по трем углам. Следовательно, AA1:OA1 = AH:AO. Откуда находим AH = √3/3.

Третье решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Откуда sin угла AOA1=√6/3
и, следовательно, AH=AO* sin угла AOH=√3/3
4,4(3 оценок)
Ответ:

На сторонах AB и BC треугольника ADC взяты точки D и E соответственно так, что AD:BD = 1:2 и CE:BE = 2:1. Отрезки AE и CD пересекаются в точке O. Найти площадь треугольника ABC, если площадь треугольника BCO равна 1. 

Рассмотрим ∆ АВЕ.

По т Менелая (ВD:DA)•(AO:OE)•(CE:CB)=1

2/1•(AO:OE)•2/3=1, откуда АО:ОЕ=3:4

ОЕ делит ВС в отношении 1:2, считая от В.

Высота ∆ СОЕ и ∆ СОВ общая.

Отношение площадей треугольников с равными высотами равно отношению их оснований. СЕ:СВ=2/3⇒

Ѕ(ВОС)=1, значит, Ѕ(СОЕ)=2/3

В ∆ АСЕ отрезок СО делит АЕ в отношении 3:4, считая от А.

Высота ∆ АСЕ и ∆ СОЕ, проведенная из вершины С, общая.

Тогда Ѕ(САЕ)=2/3:4•7=7/6

Высота ∆ АВС и ∆ АСЕ общая.⇒

Ѕ АВС=Ѕ(АСЕ):2•3=(7/6):2•3=7/4

Пошаговое объяснение:

4,7(33 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ