1) Найдем размер наибольшего квадрата 136 = 2•2•2•17 или 8•17 40 = 2•2•2•5 или 8•5 Значит, размер наибольшего квадрата: 8 см х 8 см
2) Найдем количество квадратов с размерами 8 см х 8 см По длине получается: 136:8=17 квадратов. По ширине получается: 40:8=5 квадратов Итого: 17•5 = 85 квадратов
ответ: размеры наибольших квадратов 8 см х 8 см; Всего таких квадратов получится 85 штук.
Проверка: 1) 136•40 = 5440 кв.см - площадь картонного листа. 2) 8•8= 64 кв.см - площадь одного наибольшего квадрата. 3) 5440:64= 85 целых квадратов получится.
Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле: Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
2367000000
5236000
5025000000