Во-первых, заметим, что ребро такого куба состоит из четырех кубиков, его длина, ширина и объем равен 4 ребрам маленьких кубиков.
В конструкции большого куба есть кубики четырех видов. Рассмотрим каждый отдельно.
1. Угловые. Таких кубиков всего восемь, они расположены по углам большого куба. Они имеют общую грань только с тремя кубиками, ведь их остальные грани обращены наружу.
2. Края. Это кубики, составляющие ребро большого куба. Две из их граней обращены наружу, а четыре граничат с другими кубиками. Таких кубиков на каждом ребре большого куба две штуки (остальные два кубика на ребре являются угловыми). А всего ребер 12. Выходит, таких кубиков в большом кубе 24.
3. Эти кубики составляют поверхность граней большого куба. Одна из их граней обращена наружу, а пять являются общими с другими кубиками.
4. Внутренние кубики. Они находятся внутри большого куба и имеют общую грань с шестью кубиками.
В итоге по условию нам подходят третий и четвертый вид. Теперь нужно сосчитать, сколько же таких кубиков. Для этого можно вычесть из общего числа кубиков (64) кубики 1 вида (их 8) и второго вида (их 24). Получается 32.
ответ: 32
Находим крайние точки фигуры, площадь которой надо найти.
6+5х-2х^2 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=5^2-4*(-2)*6=25-4*(-2)*6=25-(-4*2)*6=25-(-8)*6=25-(-8*6)=25-(-48)=25+48=73;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√73-5)/(2*(-2))=(√73-5)/(-2*2)=(√73-5)/(-4)=-(√73-5)/4=-(√73/4-5/4)=-(√73/4-1,25)=-√73/4+1,25 ≈ -0,886001;x_2=(-√73-5)/(2*(-2))=(-√73-5)/(-2*2)=(-√73-5)/(-4)=-(-√73-5)/4=-(-√73/4-5/4)=-(-√73/4-1,25)=√73/4+1,25 ≈ 3,386001.
Интеграл от заданной функции равен: 6х+(5/2)х²-(2/3)х³.
Подставив найденные пределы фигуры, получаем:
S = (73√73)/24 ≈ 25,988.