Число вытащить 13 карт из 52 равно C(52,13). Число вытащить 0 тузов из 52 карт равно C(4,0)*C(48,13)=C(48,13). Тогда число вытащить хотя бы один туз равно C(52,13)-C(48,13). А вероятность равна (C(52,13)-C(48,13))/C(52,13) = 14498/20825 ≈ 0.696. Число вытащить 1 туза и 12 других карт, отличных от тузов, из 52 карт, равно C(4,1)*C(48,12). А вероятность равна C(4,1)*C(48,12)/С(52,13)=9139/20825≈0.439
Допустим дан равнобедренный треугольник АВС, где АС основание треугольника, а АВ и ВС боковые стороны. Медиану, проведённую из угла А к стороне ВС обозначим АР, а медиану из угла С к стороне АВ обозначим СК. Получили два треугольника АКС и СРА. У этих треугольников стороны АК и СР равны, так как стороны АВ и ВС равны, а медианы делят противолежащие углу стороны пополам.
АВ=ВС АВ=2АК ВС=2РС ⇒ 2АК=2РС ⇒ АК=РС
Сторона АС - общая, а углы ∠КАС и ∠РСА равны как углы при основании равнобедренного треугольника. По первому признаку равенства треугольников (если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны) треугольники АКС и СРА равны, а значит и равны стороны АР и СК. Что и требовалось доказать.
Допустим дан равнобедренный треугольник АВС, где АС основание треугольника, а АВ и ВС боковые стороны. Медиану, проведённую из угла А к стороне ВС обозначим АР, а медиану из угла С к стороне АВ обозначим СК. Получили два треугольника АКС и СРА. У этих треугольников стороны АК и СР равны, так как стороны АВ и ВС равны, а медианы делят противолежащие углу стороны пополам.
АВ=ВС АВ=2АК ВС=2РС ⇒ 2АК=2РС ⇒ АК=РС
Сторона АС - общая, а углы ∠КАС и ∠РСА равны как углы при основании равнобедренного треугольника. По первому признаку равенства треугольников (если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны) треугольники АКС и СРА равны, а значит и равны стороны АР и СК. Что и требовалось доказать.
Число вытащить 0 тузов из 52 карт равно C(4,0)*C(48,13)=C(48,13).
Тогда число вытащить хотя бы один туз равно C(52,13)-C(48,13). А вероятность равна (C(52,13)-C(48,13))/C(52,13) = 14498/20825 ≈ 0.696.
Число вытащить 1 туза и 12 других карт, отличных от тузов, из 52 карт, равно C(4,1)*C(48,12). А вероятность равна C(4,1)*C(48,12)/С(52,13)=9139/20825≈0.439