Если графики функций пересекаются значит их ординаты равны в точке пересечения и значит можно записать 3-ax=(5-a)*x+a Подставляем х=-1 3-a(-1)=(5-a)*(-1)+a 3+a=-5+a+a a-2a=-5-3 -a=-8 a=8 Подставляем значение а в любую функцию и находим у y=3-8*(-1)=3+8=12 ответ: ордината точки пересечения равна 12.
Билет №1 Теоретическая часть. 1. Вопрос: Какая функция является линейной? ответ: Линейной является функция вида: f=kx+b. 2. Вопрос: Как умножить степени с одинаковыми основаниями? ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней. Билет №2: Теоретическая часть. 1. Вопрос: Что является графиком линейной функции? Как можно построить такой график? ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой. 2. Вопрос: Как разделить степени с одинаковыми основаниями? ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним. Билет №3 Теоретическая часть. 1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат: ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции). Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0). В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b). 2. Вопрос: Как возвести степень в степень? ответ: Чтобы возвести степень в степень нужно перемножить степени. Например: P. s: Решать практическую часть не буду, т.к могу ошибиться...
Каждая кость может выдать от 1 до 6 очков, таких костей три, значит, число возможных вариантов равно 6^3 = 216.
Далее, рассмотрим сумму очков на трех костях как сумму очков одной кости с суммой суммы очков двух других. Далее станет понятно, что имеется в виду. Свойство четности\нечетности суммы двух чисел можно выразить так: сумма двух четных - четное, сумма двух нечетных - четное, сумма четного и нечетного - нечетное. Очевидно, что первая кость, выдающая очки от 1 до 6 дает 3 четных и 3 нечетных значения. Рассмотрим теперь сумму двух других костей. Очевидно, что она лежит в диапазоне от 2 до 12. При это четные значения и варианты их получения выглядят так: 2 = 1 + 1 4 = 2 + 2 = 3 + 1 = 1 + 3 6 = 3 + 3 = 4 + 2 = 2 + 4 = 5 + 1 = 1 + 5 8 = 4 + 4 = 3 + 5 = 5 + 3 = 6 + 2 = 2 + 6 10 = 5 + 5 = 6 + 4 = 4 + 6 12 = 6 + 6
1 + 1 + 3 + 3 + 5 + 5 = 18 вариантов выпадения четных чисел
2 + 2 + 4 + 4 + 6 = 18 вариантов выпадения четных чисел. Можно посчитать и по-другому. 6^2 (общее число вариантов для двух костей) - 18 (четные варианты посчитанные выше) = 18. Возможно, это можно строго доказать и вообще не считая варианты, но я не силен в этом.
Итого, одна кость дает 3 четных и 3 нечетных значения. Сумма двух других дает 18 четных и 18 нечетных.
3-ax=(5-a)*x+a
Подставляем х=-1
3-a(-1)=(5-a)*(-1)+a
3+a=-5+a+a
a-2a=-5-3
-a=-8
a=8
Подставляем значение а в любую функцию и находим у
y=3-8*(-1)=3+8=12
ответ: ордината точки пересечения равна 12.