ДАНО
Y= x/(1-x²)
ИССЛЕДОВАНИЕ
1.Область определения. Деление на 0 в знаменателе.
(1-x²) = (1-x)*(1+x)≠0. Разрыв функции при Х = +/- 1.
D(x) - Х∈(-∞;-1)∪(-1;1)∪(1;+∞).
Вертикальные асимптоты - X=-1 X=1.
2. Пересечение с осью Х. Y=0 при Х=0..
3. Пересечение с осью У. У(0) = 0.
4. Поведение на бесконечности.limY(-∞) = 0, limY(+∞) = 0
Горизонтальная асимптота - Y = 0.
5. Исследование на чётность.Y(-x) = - Y(x).
Функция нечётная.
6. Производная функции.
Корни при Х= +/- 1.
7. Локальные экстремумы.
Максимума и минимума – нет.
8. Интервалы монотонности.
Возрастает на всем интервале определения- Х∈(-∞;+∞)
9. Вторая производная - Y"(x).
Корни производной - точки перегиба: х1 = 0,
9. Выпуклая “горка» Х∈(-1;0)∪(1;+∞), Вогнутая – «ложка» Х∈(-∞;-1)∪(0;1).
10. Область значений Е(у) У∈(-∞;+∞)
11. Наклонная асимптота. Уравнение: lim(∞)(k*x+b – f(x).
k=lim(∞)Y(x)/x = 0 - совпадает с горизонтальной
12.График в приложении
Признак делимости на 19 для двухзначного числа: ху делится на 19, когда х+2у делится на 19. Например: 19 => 1+2*9=1+18=19 => 19/19=1
Нам нужно двухзначное число больше 40, которое, при делении на 19, дает остаток 1.
Пусть ху - искомое число
{ 10x+y>40
{x+2y≥19 => x≥19-2y
10(19-2y)+y>40
190-20y+y>40
19y>150
y>7 17/19 => y>7
x≥19-2y≥19-14≥5
1. Имеем: десятки искомого числа ≥5, единицы >7; если предположить, что х=5, у=7, то 5+2*7=19, значит 57 кратно 19: 57/19=3.
Если xy>57, то => 58/19=3(ост.1)
Далее, находим еще двухзначные числа, соответствующие условию:
2. 19*4=76 => 76+1=77 => 77/19=4(ост.1)
3. 19*5=95 => 95+1=96 => 96/19=5(ост.1)
ответ: Существуют 3 числа, делящиеся на 19 с остатком 1: 58; 77; 96
Решение задания приложено