а)8 5/7+3,15+1 2/7+4,25=(8 5/7+1 2/7)+(3,15+4,25)=10+7,4=17,4
б)4,7+2/3+1 3/5+3,3=(4,7+3,3)+(2/3+1 3/5)=8+2 4/15=10 4/15
в)8 19/20+5,875+20 35/40=(8 19/20+20 35/40)+5,875=29 33/40+5,875=29 33/40+5 35/40=34 68/40=34 17/10=35,7
г)6,75+3 1/4-7 5/28=(3 1/4-7 5/28)+6,75= -3 13/14+6,75= -3 13/14+6 3/4=2 23/28
д)2,1+1 7/30-(4-2,9)=2,1+1 7/30-1,1=(2,1-1,1)+1 7/30=1+1 7/30=2 7/30
е)22-(4 5/7+8,91+1,09)=22-(4 5/7+10)=22-4 5/7-10=(22-10)-4 5/7=12-4 5/7=7 2/7
ж)76-4 7/25+8,28=(76+8,28)-4 7/25=84,28-4 7/25=84 7/25-4 7/25=80
з)2 5/6-1,6-2/3=(2 5/6-2/3)-1,6=2 1/6-1,6=17/30
Пошаговое объяснение:
Число делится на 8, если три последние цифры его нули или образуют число, делящееся на 8. В остальных случаях - не делится. Значит нам не интересны первые 4 цифры номера Ани и Коли, а именно там различия. Поскольку 3 последние цифры будут совпадать, то остаток от деления на 8 будет одинаковым, а именно 3. ответ 3
Если номер Ани представить в виде х - где х семизначное число, то поскольку номер Коли отличается первой цифрой и она больше на 2, то номер Коли можно представить как х+2*10⁶=х+2000000 2 000 000:8= 250 000 т. е. делится на 8, а значит остаток от деления будет зависеть только от х, а он равен 3. ответ 3
Высота ромба BE равна 2.5.
Из треугольника ABE: sin∠A=2.5/5=1/2.
cos∠A=√(1-sin²∠A)=√3/2
Отсюда из треугольника ABD найдем первую диагональ BD по т. косинусов:
BD²=AB²+AD²-2*AB*AD*cos∠A=5²+5²-2*5*5*√3/2=50-25√3
BD=√(50-25√3)=5√(2-√3)=5(√6-√2)/2
Так как ∠A+∠B=180°, то cos∠B=-cos∠A=-√3/2.
Тогда из треугольника ABC по т. косинусов найдем вторую диагональ AC:
AC²=AB²+BC²-2AB*BC*cos∠B=5²+5²+2*5*5*√3/2=50+25√3
AC=√(50+25√3)=5√(2+√3)=5(√6+√2)/2