Сложение:
Для того, чтобы складывать обыкновенные дроби, нужно привести их к общему знаменателю. Запишем сложение двух дробей
2/3 + 4/5 Оба знаменателя имеют наименьшее общее кратное (НОК). Это число 15, так как оно делится без остатка на 3 и на 5, как раз на оба знаменателя. Это и будет новый знаменатель, общий для этих двух дробей. Но изменить нужно не только знаменатель, а еще и числитель. Рассмотрим первую дробь. Чтоб получить числитель, соответствующий новому знаменателю 15, мы должны подобрать числителю дополнительный множитель. Он вычисляется так: новый знаменатель делим на старый. 15:3=5
Теперь вычисляем новый числитель. Умножаем старый числитель на дополнительный множитель. 2*5=10
И получаем новую дробь: 5/15, которая совершенно равна старой 2/3
Делаем то же самое со второй дробью. Знаменатель будет 15, как мы уже определили, а числитель - (15 : 5)*4=12
Теперь мы наконец-то можем сложить две дроби: 5/15 + 12/15
Складываем числители, а знаменатель оставляем таким, какой он есть
5+12= 17, дробь - 17/15
Пошаговое объяснение:
Для удобства набора решения, все я заменил на
1)
Сначала предварительная подготовка:
.
То есть
(в цепочке равенств оставил только первый и последний член).
Значит после переноса получаем:
.
Теперь работаем с числителем.
.
Значит
.
Осталось самое приятное: подставить наши результаты в дробь, и понять, что всё получилось
ч.т.д.
2)
Перемножим дробь "крест-накрест", получим:
по формуле разностти квадратов, получаем:
переносим в одну часть
,
что верно в силу основного тригонометрического тождества. Так как мы тождественными преобразованиями перешли от исходного выражения к тождественному равенству, значит изначально тоже было тождественное равенство, ч.т.д.
Пошаговое объяснение:
Для удобства набора решения, все я заменил на
1)
Сначала предварительная подготовка:
.
То есть
(в цепочке равенств оставил только первый и последний член).
Значит после переноса получаем:
.
Теперь работаем с числителем.
.
Значит
.
Осталось самое приятное: подставить наши результаты в дробь, и понять, что всё получилось
ч.т.д.
2)
Перемножим дробь "крест-накрест", получим:
по формуле разностти квадратов, получаем:
переносим в одну часть
,
что верно в силу основного тригонометрического тождества. Так как мы тождественными преобразованиями перешли от исходного выражения к тождественному равенству, значит изначально тоже было тождественное равенство, ч.т.д.