М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
VikaSh86
VikaSh86
14.02.2022 03:15 •  Математика

Найдите все значения а, при которых уравнение x^3-8=a(x-2) имеет ровно два различных решения

👇
Ответ:
TheEmperorgame
TheEmperorgame
14.02.2022
(x-2)(x²+2x+4)-a(x-2)=0
(x-2)(x²+2x+4-a)=0
x-2=0
x=2
x²+2x+(4-a)=0
D=4-4(4-a)=4-16+4a=4a-12=0
4a=12
a=3
x=-1
ответ при а=3 уравнение имеет 2 различных корня:х=2 и х=-1
4,8(16 оценок)
Открыть все ответы
Ответ:
leralerav
leralerav
14.02.2022
2cos²x-1=cosx
2cos²x-cosx-1=0
пусть cosx=a, |a|≤1
2a²-a-1=0
D=(-1)²-4*2*(-1)=1+8=9
a₁=(1-3):4=-0,5
a₂=(1+3):4=1
cosx=-0,5
x=\pm arccos(-0,5)+2\pi k,k∈z
x=\pm ( \pi -arccos0,5)+2 \pi k, k∈z
x=\pm (\pi - \frac{\pi}{3}) +2\pi k,k∈z
x=\pm \frac{2\pi}{3}+2\pi k,k∈z
корни:
если k=0, то x=\pm \frac{2\pi}{3},
x=2π/3-является корнем ур-я, а х=-2π/3-не является.
0<2x-π/3<10π/9
0<2*2π/3-π/3<1 1/9 π
0<4π/3-π/3<1 1/9 π
0<π<1 1/9 π
2pi/3-корень уравнения!
------------------------------------------------------------------------------------------------------
cosx=1
x=2πn,n∈z
корней, удовлетворяющих промежутку (0;1 1/9 π) у этого уравнения нет
------------------------------------------------------------------------------------------------------
ответ: 2п/3
4,4(6 оценок)
Ответ:
Sasha0067890
Sasha0067890
14.02.2022
А) Допустим, на доске написано 99 чисел из арифметической прогрессии, первый член которой равен 1, а последний - 99 (d=1). Тогда их сумма будет равна: 
S_9_9= \dfrac{a_1+a_9_9}{2}*99= \dfrac{1+99}{2}*99=4950
Это минимально возможная сумма 99 различных натуральных чисел. Прибавим к этой сумме искомое число - 240, получим: 4950+240=5190, что больше 5130 ⇒ в этих 100 числах не может быть числа 240.

Б) Опять исследуем арифметическую прогрессию. На этот раз будет 2 разных последовательности: первая, начинающаяся с 1 и заканчивающаяся 15, и вторая - от 17 до 101. Найдём суммы членов этих прогрессий:
S_1= \dfrac{1+15}{2}*15=120\\&#10;S_2= \dfrac{17+101}{2}*85=5015\\&#10;
S_1+S_2=120+5015=5135, что больше 5130 ⇒ исключить число 16 не получится.

В) Допустим, что выписаны все числа арифметической прогрессии от 1 до 100 (при d=1). Тогда их сумма будет равна:
S= \dfrac{1+100}{2}*100=5050, что меньше суммы, данной в условии (5130). Так как нас просят найти минимальное количество чисел, кратных 16 (в нашей последовательности это 16, 32, 48, 64, 80 и 96), попробуем заменять их на другие числа, следующие за сотней. Выгоднее будет начинать замену с больших чисел.
  Попробуем вычеркнуть 48, 64, 80 и 96. Тогда оставшаяся сумма будет равна 5050-48-64-80-96=4762. Теперь постараемся заменить эти 4 числа минимально возможными, следующими за сотней: 4762+101+102+103+104=5172, что больше 5130. Значит вычеркнуть 4 числа, кратных 16, не получится.
  Попробуем вычеркнуть 3 наибольших числа: 5050-64-80-96=4810. 4810+101+102+103=5116, что меньше 5130, значит мы можем заменить, например, число 103 на число 114 и получить в сумме 5130 ⇒ минимально возможное количество цифр кратных 16 в этих 100 числах равно 3. 
4,6(17 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ