Предположим, что у нас есть функция (график этой функции – это парабола) и необходимо построить график функции . Вычислим значения некоторых точек для графиков этих функций.
Из таблиц видно, что одним и тем же значениям аргумента соответствуют противоположные значения функций. Графически это означает, что графики расположены симметрично относительно оси абсцисс. То есть заданная парабола () зеркально отобразится относительно оси (см. Рис. 1).
Рис. 1. Графики функций и
Таким образом, если у нас есть произвольный график , то для построения графика необходимо график симметрично отразить относительно оси (см. Рис. 2). Такое преобразование называется преобразованием симметрии относительно оси .
Рис. 2. Преобразование симметрии относительно оси
Преобразование симметрии – зеркальное отражение относительно прямой. График получается из графика функции преобразованием симметрии относительно оси .
На рисунке 3 показаны примеры симметрии относительно оси .
Рис. 3. Симметрия относительно оси Ox
ответ:Биссектриса делит угол, из которого выходит, пополам. От сюда, можно узнать что углы ∠ABD и ∠DBC=80/2=40°
Рассмотрим треугольник ABD, в нем мы знаем два угла: ADB и ABD. Зная два угла в треугольнике можно найти третий угол, т. к. сумма углов в треугольнике равна 180°. Тогда: 180°-(40°+120°)=20°. Т. е. угол ∠DAB = 20°;
Теперь рассмотрим треугольник ABC, в нем мы теперь знаем два угла: ∠A (равен углу ∠DAB ) и угол ∠B, отсюда можно найти третий угол ∠C: 180°-(20°+80°)=80°.
Рассмотри треугольник DBC, в нем нам известны два угла ∠DBC и ∠C, найдем третий угол: 180°-(40°+80°)=60°.
ответ: В треугольнике CBD углы: ∠CBD=40°, ∠C=80°, ∠CDB=60°.
+ - +
(-6) (5)
x∈(-6;5)
ответ: (-6;5)