М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ilonasusak77
ilonasusak77
07.09.2022 02:58 •  Математика

Вправильной четырехугольной пирамиде sabcd точка о — центр основания, s вершина, sa = 26 , bd = 20. найдите длину отрезка so.

👇
Ответ:
nikspirin
nikspirin
07.09.2022
Пишите, если что не так.
Вправильной четырехугольной пирамиде sabcd точка о — центр основания, s вершина, sa = 26 , bd = 20.
4,5(66 оценок)
Открыть все ответы
Ответ:
битика
битика
07.09.2022

Ниже читай

Пошаговое объяснение:

Теоре́ма Пифаго́ра — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника: сумма квадратов длин катетов равна квадрату длины гипотенузы.

Соотношение в том или ином виде предположительно было известно различным древним цивилизациям задолго до нашей эры; первое геометрическое доказательство приписывается Пифагору. Утверждение появляется как Предложение 47 в «Началах» Евклида.

Также может быть выражена как геометрический факт о том, что площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Верно и обратное утверждение: треугольник, сумма квадратов длин двух сторон которого равна квадрату длины третьей стороны, является прямоугольным.

Существует ряд обобщений данной теоремы — для произвольных треугольников, для фигур в пространствах высших размерностей. В неевклидовых геометриях теорема не выполняется

4,7(44 оценок)
Ответ:
катя134689
катя134689
07.09.2022
Проверяй и заодно СВОЮ голову наполняй:
Признаки делимости
Признаки делимости на 2, 4, 8, 3, 9, 6, 5, 25, 10, 100, 1000, 11.

Признак делимости на 2. Число делится на 2, если его последняя цифра - ноль или делится на 2. Числа, делящиеся на два, называются чётными, не делящиеся на два – нечётными.

Признак делимости на 4. Число делится на 4, если две его последние цифры - нули или образуют число, которое делится на 4.

Признак делимости на 8. Число делится на 8, если три его последние цифры - нули или образуют число, которое делится на 8.

Признаки делимости на 3 и 9. Число делится на 3, если его сумма цифр делится на 3. Число делится на 9, если его сумма цифр делится на 9.

Признак делимости на 6. Число делится на 6, если оно делится на 2 и на 3.

Признак делимости на 5. Число делится на 5, если его последняя цифра - ноль или 5.

Признак делимости на 25. Число делится на 25, если две его последние цифры - нули или образуют число, которое делится на 25.

Признак делимости на 10. Число делится на 10, если его последняя цифра - ноль.

Признак делимости на 100. Число делится на 100, если две его последние цифры – нули.

Признак делимости на 1000. Число делится на 1000, если три его последние цифры – нули.

Признак делимости на 11. На 11 делятся только те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, делящееся на 11.
4,5(23 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ