Пошаговое объяснение:
. Известно, что tg(8,5rc -х) = а. Найдите значение tg(-x).
6. Известно, что sin(19,57t - х) = а и х Є 2rcj. Найдите значение cosx.
Найдиїе наименьший положительный период функции №№ 7—8.
7. Дх) = sin2 4х - cos2 4х.
8. g(x) = 0,2 sin Зх cos6x cos3x.
153
Найдите область значений функции №№ 9—10.
9. f(x) = -9sinx + 4.
10. f{x) = 0,3Х+} - 10.
11. Найдите наименьшее положительное значение аргумента, при котором график функции g{x) = 2 sinx ctgx проходит через точку, лежащую на оси абсцисс.
12. Найдите наибольшее отрицательное значение аргумента, при котором график функции h{x) = -9 cosx tgx проходит через точку оси Ох.
13. Найдите значение производной функции
/(X) = (f/^ + f/? + l)(|/7-l) в точке X0 = 2001.
14. Определите абсциссы точек, в которых угловой коэффициент' касательной к графику функции h(x) = 1 - 2sin2x равен 2.
15. При каком значении аргумента равны скорости изменения функций /(х) = -[/Зх - 10 и g(x) = У14 + 6х?
16. Найдите наибольшее положительное значение аргумента из промежутка [0; 2я], при котором скорость изменения функции /(х) = tgx не меньше скорости изменения функции g(x) = 4х + 23.
,1*1
17. Найдите нули функции g(x) =
1, если X < 3, sinx + 3, если X > 3.
18. Функция у = /(х) определена на промежутке (-6; 6). На рисунке изображен график ее производной. Найдите точки минимума функции у = /(х) на промежутке (-6; 6).
_с
1 \
\ / I
> / 0
/ 1 X
ч у г
¦ f
У — j v*/ і і і і
154
19'. Функция у = f(x) определена на промежутке [-6; 6]. На рисунке (см. рисунок к заданию 18) изображен график ее производной. Найдите промежутки убывания функции у = f(x).
20. Найдите площадь фигуры, ограниченной линиями у = ех, у = X1 X = 2, X = 0.
21. Найдите наименьшее значение функции g{x) = log0>5(2 -х2).
22. Найдите наименьшее значение функции g(x) = 1Og1(S -х2).
23. Найдите наибольшее целочисленное значение функции
у = З У {sinx - cosx)2 + 0,25.
24. Найдите наименьшее целочисленное значение функции
у = |-V36sin2x- 12 sinx + 17.
25. Найдите наибольшее целочисленное значение функции
ос оcosAxcos3* + sin4*sin3:r- 2 у = ZO о
26. Найдите наибольшее целочисленное значение функции
4 о о sinx sin 2х + cosx cos 2х — 3
г/ = Io Z
27. При каком значении т функция у = |^5х2 + тх - 3 имеет минимум в точке X0 = 1,3?
28. При каком значении т функция у = ]/тх2 + 6х - Г имеет максимум в точке X0 = 3?
29. Найдите все значения а, при которых функция
у = |/бх2 - Зах+ 1-а имеет минимум в точке X0 = —2,5.
30. Найдите все значения а, при которых функция
у = ^-6х2 + (3 + а)X + 5 - а 1
имеет максимум в точке X0 = -g.
31. При каком наибольшем отрицательном значении а функция у = sin^25x + -щ-) имеет максимум в точке X0 = я?
32. При каком наименьшем положительном значении а функция у = cos^24x + —5.^ имеет максимум в точке X0 = я?
тут не решения будут, а, скорее, рассуждения...
вот и давай рассуждать.
1. асель думала, что ее часы спешат на 3 минуты, поэтому, что быть вовремя(как ей кажется), она прийдет на встречу когда на ее часах будет 9:03.
но на самом деле ее часы отставали на 7 минут, поэто она на самом деле опаздает на 10 мин(7мин, на которые отстают часы+3мин, на которые по ее мнению часы спешили.) баян прийдет на встречу когда на ее часах будет 8:55, в полной уверенности, что ее часы отстают на 5мин. но на самом деле они спешили на 10мин, поэтому баян прийдет раньше на 15мин(10мин, на которые спешили часы+5мин, на которые по ее мнению, часы отставали).
таким образом, раньше прийдет баян.
2. брату и сестре 3 года назад вместе было 15 лет.
мы знаем сколько было брату и сестре 3 года назад, а узнать надо сколько будет через 9 лет. 3+9=12. за 12 лет к возрасту каждого из них прибавиться по 12 лет, а в сумме 12+12=24 года.
было 15, прибавляем 24. получаем 15+24=39. через 9 лет им будет вместе 39 лет.
3. у нас есть ведра 4 и 9 литров. нам необходимо набрать 6л.
набираем полное 9литровое ведро. наполняем из него 4хлитровое. в 9литровом остается 5л. 9-4=5.
выливаем воду из 4хлитрового и опять наполняем его из 9литрового(в котором у нас осталось 5л). 5-4=1. в 9литовом остается 1л.
из 4хлитрового опять выливаем воду и переливаем в него 1л из 9литрового.
теперь у нас в 4литровом 1л, а 9литровое пустое.
набираем опять полное 9литровое ведро. и доливаем в 4литровое до конца. таким образом мы отольем 3литра из 9литрового. а 9-3=6. в 9литровом у нас останется небходимые нам 6л.
Дисперсия D=(1-0,607)²+(2-0,607)²+(-3-0,607)²+(3,14-0,607)²+(0,2-0,607)²+(0,3-0,607)²=21,781.