Если сумма пятого и седьмого членов арифметической прогрессии равна 24, а сумма третьего и восьмого членов равна 32, то разность арифметической прогрессии равна
У = 0.25х^4 - 2x² Производная у' = x³ - 4x y' = 0 x³ - 4x = 0 или x·(x - 2)(x + 2) = 0 Экстремальные точки: х =-2; х = 0: х = 1 Проверим знаки производной в интервалах х∈(-∞; -2), х∈(-2; 0), х∈(0; 2), х∈(2; +∞) При х = -3 y' = -27 + 12 = -15 < 0 функция убывает При х = -1 y' = -1 + 4 = 3 > 0 функция возрастает При х = 1 y' = 1 - 4 = -3 < 0 функция убывает При х = 3 y' = 27 - 12 = 15 > 0 функция возрастает 1. Функция убывает при х∈(-∞; -2)U(0; 2) и возрастает при х∈(-2; 0)U(2; +∞) 2. Точки экстремума точка минимума х = -2; точка максимума х = 0; точка минимума х = 2.
a5+a7=24⇒a1+4*d+a1+6*d=24⇒2*a1+10*d=24. a3+a8=32⇒a1+2*d+a1+7*d=32⇒2*a1+9*d=32. Вычитаем из 2 выражения первое 2*a1+9*d-2*a1-10*d=32-24=8⇒-d=8⇒d=-8.
ответ: разность прогрессии равна минус 8