Решение на фото в приложении.
Разрежем шар вдоль оси конуса... Получим на срезе равнобедренный треугольник вписанный в окружность...
Соединим центр окружности с вершинами треугольника...
Получим еще один треугольник с вершинами в двух точках основания конуса и в центре шара... Этот треугольник равнобедренный со сторонами равными радиусу шара R и высотой равной разности (h-R). Половина его основания вычисляется по теореме Пифагора...
r^2 = R^2 - (h-R)^2 = 2Rh - h^2
1) Если известен радиус шара R=3, то радиус основания конуса равен r = sqrt(6h - h^2)
2) Объем конуса равен
Функция обема конуса возрастает при h<4 и убывает при h>4
Следовательно максимальный объем будет при h=4
ответ: 1:2:3
Одна сторона треугольника равна 16, а радиус окружности, в которую он вписан - 8. Это значит, что эта сторона является диаметром этой окружности, а треугольник прямоугольный с гипотенузой 16 и одним из катетов 8 квадратных корней из 3.
Второй катет находится по теореме Пифагора: катет равен корню квадратному из разности между квадратоами гипотенузы и второго катета. В нашем случае он равен 8. Мы получили, что второй катет вдвое меньше гипотенузы, значит, угол, ему противолежащий, будет равен 30 градусов, а прилежащий к нему 180 - 30 - 90 = 60 градусов.
Таким образом, дуга деится вершинами треугольника в отношении 90:30:60 = 3:1:2. Или, для удобства записи, 1:2:3.
d = 0.6
a1 = 0.78
Пошаговое объяснение:
an = a1 + d(n-1)
a4 + a11 = a1 + 3d + a1 + 10d = 0.2
a9 - a5 = a1+8d - a1 - 4d = 2.4
2a1 + 13d =0.2
4d = 2.4, d = 0.6
a1 = (0.2 - 13d)/2 = (0.2 - 7.8)/2 = 0.78