1. Область определения функции - вся числовая ось: D(f) = R при х ≠ 1.
2. Функция f (x) = (2x-1)/(x-1)^2 непрерывна на всей области определения.
Точка, в которой функция точно не определена (разрыв функции): х ≠ 1.
Область значений функции приведена в пункте 5.
3. Точки пересечения с осью координат Ох.
График функции пересекает ось Ох при f = 0, значит надо решить уравнение:
(2x-1)/(x+1)^2 =0.
Достаточно для дроби приравнять нулю числитель и проверить, не превращается ли в 0 знаменатель при найденных корнях.
Приравниваем нулю: 2х - 1 = 0. х = 0,5.
Значит, функция может принимать значения х = 0, так как точка, при которой знаменатель превращается в 0, это х = 1.
4. Точки пересечения с осью координат Оу.
График пересекает ось Oy, когда x равняется 0.
В соответствии с пунктом 3 х = 0, точка пересечения графика с осью координат Оу: х = 0.
Результат: f(0) = -1. Точка: (0, -1).
5. Для того, чтобы найти экстремумы, нужно решить уравнение
y’ = 0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:
y^'=-2x/(x-1)^3 =0.
Решаем это уравнение и его корни будут экстремумами (достаточно нулю приравнять числитель): 2x=0.
Получаем 1 корень этого уравнения и это - точка, в которых возможен экстремум: х = 0 .Эта точка делит область определения функции на 2 промежутка, а с учётом точки разрыва функции при х = 1 получаем 3 промежутка монотонности функции :
x ϵ (-∞; 0) U (0; 1) U (1; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x = -1 0 0,5 1 2
y' = -0,25 0 8 - -4
Минимум функции в точке х = 0.
Максимума функции нет.
Возрастает на промежутке: x ϵ (0; 1).
Убывает на промежутках: (-∞; 0) (1; +∞)..
Наличие точки разрыва функции первого рода требует определения предела функции при приближении к точке х = 1.
Находим пределы при х→1_(-0) и х→1_(+0).
lim┬(x→1)〖(2x-1)/(x-1)^2 =∞〗.
Так как в точке х = 1 функция терпит бесконечный разрыв, то прямая, заданная уравнением х = 1, является вертикальной асимптотой графика.
Отсюда находим область значений функции - вся числовая ось: E(y) = R.
6. Точки перегибов графика функции:
Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции.
y^''=(2(2x+1))/(x-1)^4 =0.
Это уравнение имеет решение при 2x+1=0,x=-1/2.
Поэтому у графика перегиб в точке ((-1/2); (-8/9)).
7. Интервалы выпуклости, вогнутости:
Так как вертикальная асимптота делит график на 2 части, а точка перегиба находится в одной из них, то имеем 3 промежутка выпуклости функции:
x ϵ (-∞; (-1/2)) U ((-1/2); 1) U (1; +∞).
Находим знаки второй производной на этих промежутках - где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый:
x = -1 -0,5 0,5 1 2
y'' = -0,125 0 64 - 10
Выпуклая на промежутке: (-∞; (-1/2)).
Вогнутая на промежутках: ((-1/2); -1) и (-1; ∞).
8. Асимптоты.
Вертикальная асимптота определилась в пункте 2, это прямая х = 1.
Горизонтальные асимптоты графика функции:
Горизонтальную асимптоту найдем с предела данной функции при x->+∞ и x->-∞. Соотвествующие пределы находим:
lim┬(x→∞)〖2x/(x-1)^2 =∞〗, значит, горизонтальной асимптоты справа не существует
lim┬(x→-∞)〖2x/(x-1)^2 =-∞〗,, значит, горизонтальной асимптоты слева не существует.
Наклонные асимптоты графика функции
Уравнение наклонной асимптоты имеет вид y=kx+b. Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при lim┬( x→±∞)〖(kx+b-f(x)).〗
Находим коэффициент k: k=lim┬(x→±∞)〖(f(x))/x.〗
k= lim┬(x→∞)〖(2x-1)/((x-1)^2 x)=(2x-1)/(x^3-2x^2+x)=(2x/x^3 -1/x^3 )/(x^3/x^3 -(2x^2)/x^3 +x/x^3 )=(0-0)/(1-0+0)=0.〗
Так как коэффициент к = 0, то наклонной асимптоты нет, она совпадает с осью Ох при x→∞.
9. Четность и нечетность функции:
Проверим функцию - четна или нечетна с соотношений f(-x)=f-x) и f(-x)=-f(x). Итак, проверяем: f(-x)=(-2x-1)/(-x-1)^2 =(-(2x+1))/(x+1)^2 ≠f(x)≠-f(x).
3начит, функция не является ни чётной, ни нечётной.
Таблица точек
x y
-4.0 -0.36
-3.5 -0.4
-3.0 -0.44
-2.5 -0.49
-2.0 -0.56
-1.5 -0.64
-1.0 -0.75
-0.5 -0.89
0 -1
0.5 0
1.0 -
1.5 8
2.0 3
2.5 1.78
3.0 1.25
3.5 0.96
4.0 0.78
4.5 0.65
5.0 0.56
5.5 0.49
6.0 0.44
Пошаговое объяснение:
1) 5*3*3*13
2)а)3 б)6 в)3 г)7
3) Простые множители числа 98 это 2, 7, 7. А простые множители числа 665 это 5, 7, 19. Ни одни из них не совпадают
1)2*2*3*3*7*11
2)4)=30; 5)=60; 6)=182; 1)=315; 2)=46; 3)=24
1)2*3*3*3*1; 2*2*2*2*7*1; 2*5*3*7*13*1
2)105 = 3*5*7
286 = 2*11*13
НОД (105;286) = 1, значит они взаимно простые
3)Разложим на простые множители 36
36 =2*2*3*3
Разложим на простые множители 45
45=3*3*5
Найдем произведение одинаковых простых множителей 3*3
НОД (36; 45) = 3*3=9
4)14 = 2 * 7 - простые множители числа
12 = (2*2) * 3 - простые множители числа
НОК (14 и 12) = (2*2) * 3 * 7 = 84 - наименьшее общее кратное
84 + 84 = 168 - общее кратное 14 и 12
168 + 84 = 252 - общее кратное 14 и 12
и т.д. + 84 ... - общее кратное 14 и 12
84 и 168 не превышают 170
84 + 168 = 252 - сумма общих кратных, не превышающих 170.
ответ: 252.
Подробнее - на -
Пошаговое объяснение:
2) 6 000 + 80 + 3
3) 10 000 + 5 000 +9
4) 20 000 + 5 000 + 400 + 60 + 7
5) 10 000 + 800 + 3
6) 200 00 + 6 000 + 30